
ABSTRACT

Using a geospatial approach, this study analyses the flood susceptibility of the Kabini 
catchment in Karnataka, encompassing 946 villages in Mysore and Chamarajanagar 
districts. By integrating Geographic Information Systems (GIS), remote sensing data, 
and a variety of environmental and hydrological variables, the study aims to create a 
flood susceptibility map that serves as a tool for informed land-use planning, disaster 
risk reduction, and mitigation strategies. The methodology involves acquiring and 
processing both spatial and non-spatial data, followed by the application of Multi-
Criteria Decision Making (MCDM) using a weighted product cum geometric mean 
approach to combine thematic layers such as average rainfall, rainfall-runoff, 
elevation, slope, topographic indices, drainage characteristics, and vegetation cover. 
The results delineate varying degrees of flood susceptibility across the catchment, 
revealing that 587 villages are classified as having low susceptibility, 163 as less 
susceptible, 116 as moderately susceptible, and 80 as highly susceptible to floods. The 
comprehensive analysis emphasizes the importance of considering multiple dimen-
sions of flood risk, as these complex interactions between natural and anthropogenic 
factors contribute to flood vulnerability. This research underscores the importance of a 
multi-dimensional approach to flood susceptibility mapping, enabling better-informed 
decision-making and targeted interventions. The findings benefit local stakeholders 
and serve as a model for other regions facing similar flood risks, contributing to 
broader disaster risk reduction initiatives.

HIGHLIGHTS

l An extensive assessment in Mysore and Chamarajanagara Districts identified 80 villages as highly susceptible to flooding.

l Key factors such as rainfall intensity, soil moisture, elevation, slope, topography, drainage characteristics, and vegetation cover were 
comprehensively analyzed to understand each area's flood susceptibility.

l The study underscores the need for a multidimensional approach to flood susceptibility mapping, addressing the complex interplay of 
factors contributing to flood risks.
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1  INTRODUCTION|  

Flood susceptibility mapping is essential for understanding 
and managing flood risks, especially as climate change and 
urbanization increase the frequency and severity of flooding 
events. Creating accurate flood maps is crucial for water 
resource managers. However, several challenges persist. One 
major issue is obtaining high-quality data, particularly in 
areas with limited resources or poor data infrastructure. 
Additionally, the complex nature of floods, influenced by 
climate change, land use changes, and socio-economic factors, 
makes it challenging to model flood risk accurately. Flood 

susceptibility mapping has been extensively researched using 
a variety of methodologies, demonstrating significant similari-
ties in the approaches and outcomes across different studies. 
Integrating multiple methods to enhance the accuracy and 
reliability of flood maps is a common theme. 

Several scholars and researchers have done similar 
work, whereas Akay ( ) employed a combination of 
statistical methods, fuzzy logic, and multi-criteria decision-
making (MCDM) techniques for identifying flood-susceptible 
zones, while Samanta et al. ( ) utilized the geospatial 
frequency ratio technique to identify flood-prone areas 
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is located in the southern state of Karnataka, India. The 
study area covers an area of approximately 4908.41 sq km, 
and its elevation ranges from 650 m to1440 m above the 
mean sea level. In contrast, the catchment includes parts of 
Mysore and Chamarajanagar districts within Karnataka. 
The Kabini river, a major tributary of the Cauvery, origi-
nates in the Wayanad hills of Kerala and flows into 
Karnataka before joining the main Cauvery river. Kabini 
catchment experiences a tropical climate with a distinct 
monsoon season, receiving an annual rainfall between 600 
mm and 2,000 mm, predominantly during the southwest 
monsoon. The catchment is primarily agricultural, with 
crops like paddy, sugarcane, and millet. Forests, including 
the Bandipur and Nagarhole national parks, cover signifi-
cant portions and are known for their rich biodiversity and 
tiger reserves. Kabini reservoir, a vital water source, regulates 
irrigation and drinking water supply. The river system is 
also critical for downstream water management in the 
Cauvery basin. The Kabini catchment has a history of 
recurrent flooding, primarily driven by the southwest 
monsoon. Floods in this region are influenced by heavy 
rainfall, the topography of the Western ghats, and the 
riverine systems that drain into the Kabini river. Flood 
studies are critical for regions like the Kabini catchment, 
prone to recurrent flooding. Understanding the causes, 

patterns, and impacts of floods is pivotal in planning, 
development, and disaster management.

The methodology employed (Flowchart 1) for flood 
susceptibility mapping in the Kabini basin integrates 
geographic information systems (GIS) and remote sensing 
(RS) techniques with MCDM approaches. The process 
involves several key steps:

Spatial and non-spatial data were acquired from 
various sources (Table 1). Selection of flood influencing 
factors was identified through a review of literature such as 
average annual rainfall, rainfall-runoff, elevation, slope, 
topographic wetness index (TWI), topographic position 
index (TPI), drainage density (DD), stream power index 
(STPI) and normalised difference vegetation index (NDVI). 
Each factor was standardized and assigned a weight based 
on its influence on flooding through MCDM approach 
based on Saaty's AHP's relative importance weight 
assignment techniques was employed for assigning relative 
weight for each raster data, and weighted product model 
(WPD) was employed to integrate various flood influencing 
factors. Using suitable threshold values, the flood suscepti-
bility index was classified into different susceptibility zones 
(e.g., very low, low, moderate, high, and very high). The 
final flood susceptibility map was validated using historical 
flood data and statistical measures to assess its accuracy and 
reliability. 

Rainfall runoff is estimated using the soil conservation 
service (SCS) curve number (CN) method, a hydrological 

effectively. Mousavi et al. ( ) used a comparative analysis 
between statistical and MCDM methods to assess flood 
susceptibility in northern Iran, leveraging hydrological and 
topographical data. Kotecha et al. ( ) employed an 
ensemble GIS-based MCDM-AHP approach to map flash 
flood susceptibility in the Luni river basin, combining 
hydrological factors and spatial analysis. Poddar et al. 
( ) applied a geospatial subjective MCDM model in the 
Teesta river basin, integrating topographical and rainfall 
data for flood susceptibility. Mahato et al. ( ) assessed 
various MCDM techniques for flood susceptibility, while 
Gupta et al. ( ) used MCDA-AHP to develop flood risk 
maps for Assam, integrating hydrological and administra-
tive data. Bera et al. ( ) evaluated the effectiveness of 
machine learning and information theory alongside MCDM 
in flood mapping under different spatial scales. Vashist et al. 
( ) applied the AHP method to map flood hazards in the 
Krishna river basin, while Bora et al. ( ) conducted 
MCDM-based flood susceptibility analysis for the Dibrugarh 
district, using GIS and hydrological data inputs. Choudhury 
et al. ( ) applied GIS-based AHP modelling for flash 
flood susceptibility in India, using criteria like slope, land 
use, and drainage density. Dutta et al. ( ) combined 
MCDM-AHP with multicollinearity and sensitivity analysis 
for flood risk assessment in the Brahmaputra floodplain, 
considering hydrological and socio-economic factors. Mitra 

and Das and Kamruzzaman ( ) compared 
GIS-based TOPSIS, VIKOR, and EDAS models for flood 
susceptibility mapping in the sub-Himalayan foothills, focusing 
on model performance in different terrains. Pathan et al. ( ) 
implemented AHP and TOPSIS methods to assess dam site 
suitability in Navsari city, Gujarat. Further studies by 
(Chakrabortty et al., ; Souissi et al., ; Das, , 
Rana et al., ; Dutta et al., . Hammami et al. ( ) 
highlight the importance of combining different data sources 
and analytical approaches to improve flood susceptibility 
mapping Andaryani et al. ( ) integrated hard and soft 
supervised machine learning techniques, demonstrating the 
value of combining rigorous data-driven methods with flexible, 
adaptive algorithms. Similarly, Shafizadeh-Moghadam et al., 

 employed a novel combination of machine learning and 
statistical models to enhance flood susceptibility predictions. 
These integrations reflect a broader trend towards using 
advanced computational techniques to improve the predictive 
accuracy of flood maps. Ensemble modelling approaches, 
which combine multiple algorithms, have shown promise in 
improving the robustness of flood susceptibility maps. 
Arabameri et al. ( ) used meta-heuristic algorithms. The 
use of advanced machine learning algorithms, such as those 
employed by Bui et al. ( ), who integrated swarm 
intelligence algorithms into deep learning neural networks, 
and Costache et al. ( ), who used a neural fuzzy-based 
machine learning ensemble, further underscores the potential 
of artificial intelligence in enhancing flood prediction models.
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In this context, flood susceptibility mapping studies 
often share standard methodologies and goals despite specific 
techniques and geographic focus differences. Integrating 
statistical methods, machine learning algorithms, GIS, remote 
sensing data, and MCDA techniques reflects a multi-
disciplinary approach to producing accurate and reliable 
flood susceptibility maps. These maps are crucial for 
informing land-use planning, disaster risk reduction, and 
mitigation strategies, ultimately helping to manage and 
reduce the risks associated with flooding.

The recent advancements in flood susceptibility 
mapping methodologies include the application of various 
geospatial and MCDM approaches, particularly focusing on 
techniques like the Analytical Hierarchy Process (AHP), 
Weighted Product Model (WPM), and geometric mean 
methods. Ali et al. ( ) conducted a comprehensive study 
in the Wadi Hanifah Drainage Basin using both AHP and 
WPM methods, highlighting the significance of these 
approaches in weighting flood-influencing factors. By 
employing these models, the authors could assess the 
contribution of topographical and hydrological factors to 
flood susceptibility with a high degree of accuracy. Balogun 
et al. ( ) explored a comparative framework, integrating 
data mining, MCDM, and fuzzy computing techniques for 
flood susceptibility mapping. Among the approaches, the 
geometric mean was used as a core methodology for evaluat-
ing the influence of multiple criteria, offering a balanced 
and integrated assessment across spatial domains.

Further, Mudashiru et al. ( ) compared two MCDM 
methods, including the weighted product model, for optimiz-
ing flood-influencing factors, particularly emphasizing the 
efficiency of WPM in integrating multiple criteria for flood 
hazard evaluation. Their study demonstrated how WPM 
effectively balances competing factors to generate more 
reliable flood maps. Nguyen et al. ( ) also applied 
MCDM methods for ranking sub-watersheds in flood hazard 
mapping, using the geometric mean technique to rank and 
prioritize areas based on vulnerability. Combining these 
methods provided a robust framework for spatial flood 
hazard assessments.

These studies underline the relevance of using tech-
niques like the geometric mean and WPM in geospatial 
analyses for flood susceptibility mapping. These techniques 
offer enhanced precision in factor weighting and prioritiza-
tion, contributing to more accurate flood risk predictions 
across diverse regions.
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2  MATERIALS AND METHODS

2.1  Study Area

|  

|  

The Kabini catchment (Fig. 1) geographically extends 
between 76°3'E to 76°55'E longitude and 11°40'N to 12°20' 
N latitude, within Karnataka, part of the Cauvery river basin, 

FIGURE 1    Location map of the Kabini catchment

FLOWCHART 1    Methodology of the study 
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also critical for downstream water management in the 
Cauvery basin. The Kabini catchment has a history of 
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highlight the importance of combining different data sources 
and analytical approaches to improve flood susceptibility 
mapping Andaryani et al. ( ) integrated hard and soft 
supervised machine learning techniques, demonstrating the 
value of combining rigorous data-driven methods with flexible, 
adaptive algorithms. Similarly, Shafizadeh-Moghadam et al., 

 employed a novel combination of machine learning and 
statistical models to enhance flood susceptibility predictions. 
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accuracy of flood maps. Ensemble modelling approaches, 
which combine multiple algorithms, have shown promise in 
improving the robustness of flood susceptibility maps. 
Arabameri et al. ( ) used meta-heuristic algorithms. The 
use of advanced machine learning algorithms, such as those 
employed by Bui et al. ( ), who integrated swarm 
intelligence algorithms into deep learning neural networks, 
and Costache et al. ( ), who used a neural fuzzy-based 
machine learning ensemble, further underscores the potential 
of artificial intelligence in enhancing flood prediction models.

2022

2023

2022

2023

2022

2022

2024
2022

2022

2024

2023

2022

2022 2020 2020
2024 2024 2019

2021

2018

2022

2020

2020

and Das ( ) 2023

In this context, flood susceptibility mapping studies 
often share standard methodologies and goals despite specific 
techniques and geographic focus differences. Integrating 
statistical methods, machine learning algorithms, GIS, remote 
sensing data, and MCDA techniques reflects a multi-
disciplinary approach to producing accurate and reliable 
flood susceptibility maps. These maps are crucial for 
informing land-use planning, disaster risk reduction, and 
mitigation strategies, ultimately helping to manage and 
reduce the risks associated with flooding.

The recent advancements in flood susceptibility 
mapping methodologies include the application of various 
geospatial and MCDM approaches, particularly focusing on 
techniques like the Analytical Hierarchy Process (AHP), 
Weighted Product Model (WPM), and geometric mean 
methods. Ali et al. ( ) conducted a comprehensive study 
in the Wadi Hanifah Drainage Basin using both AHP and 
WPM methods, highlighting the significance of these 
approaches in weighting flood-influencing factors. By 
employing these models, the authors could assess the 
contribution of topographical and hydrological factors to 
flood susceptibility with a high degree of accuracy. Balogun 
et al. ( ) explored a comparative framework, integrating 
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efficiency of WPM in integrating multiple criteria for flood 
hazard evaluation. Their study demonstrated how WPM 
effectively balances competing factors to generate more 
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MCDM methods for ranking sub-watersheds in flood hazard 
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TABLE  1    Data Source and Method of Processing

S.No. Layer Name Data Sources Techniques used to prepare raster layer

  1 Average Annual Rainfall IMD Gridded File (1990-2023) Spatial Interpolation Inverse Distance Weighted 
(IDW) through ArcGIS Software

  2 Soil Data KSRSAC, Bangalore
  3 Land Use Land Cover (LULC) ESRI Sentinel II, 2022
  4 SCS-CN Numbers USDA 
  5 Contours Survey of India Toposheet Digitisation through ArcGIS Software
  6 Terrain Elevation, Digital Elevation Contours as per S.N.5 Interpolation through ArcGIS Software

Model (DEM)
  7 Terrain Slope DEM as per S.N.6 Slope Estimation through ArcGIS Software
  8 Topographic Wetness Index

https://saga-gis.sourceforge.io/saga_ DEM as per S.N.6 Through SAGA GIS Software
tool_doc/2.3.0/ta_hydrology_20.html Formula: TWI = ln(flow_accumulation / tan(slope))

  9 Topographic Position Index DEM as per S.N.6 TPI = z0 - z¯, where z0 is the elevation at the central 
https://saga-gis.sourceforge.io/ saga_tool point, and z¯ is the average elevation around it within 
_doc/2.2.0/ ta_morphometry_18.html a predetermined radius.

A positive value of TPI indicates Ridges or hills, and 
a Positive value of TPI indicates Valleys or pits.

10 Drainage Density Streams Extracted from Kernel Density Estimation (KDE) through ArcGIS 
https://pro.arcgis.com/en/pro-app/latest/ DEM as per S.N.6 Software
tool-reference/spatial-analyst/line-density.htm

11 Stream Power Index
https://saga-gis.sourceforge.io/ saga_tool_ Streams as per S.N.6 Through SAGA GIS Software SPIi = ln(DAi * tan 
doc/2.2.5/ ta_hydrology_21.html (Gi)) where SPI is the stream power index at grid 

cell i, DA is the upstream drainage area (flow 
accumulation at grid cell i multiplied by grid cell 
area), and G is the slope at a grid cell i in radians.

12 Normalised Difference Vegetation Sentinel Copernicus NDVI = (NIR - RED) / (NIR + RED)
Index (NDVI) NIR = Near Infrared Band Image

RED = Red Band Image

13 Flood Susceptibility Map Weighted Product
Geometric Mean  

(Product of all nine weighted layers)^1/n, where n= 
9 according to the present study.

FIGURE 2    Annual Average Rainfall

tool developed by the US Department of Agriculture 
(USDA)'s Natural Resources Conservation Service (NRCS). 
The CN method assigns values (0-100) to different land uses 
(Fig. 4) and soil types (Fig. 3), indicating runoff potential. 
Lower CN values represent higher infiltration and lower 
runoff, while higher CN values indicate the opposite. Soils 
are classified into four groups by the NRCS: Group A (high 
infiltration, e.g., sands), Group B (moderate infiltration, 
e.g., loams), Group C (slow infiltration, e.g., clays), and 
Group D (very slow infiltration, e.g., high shrink-swell 
clays, rock outcrops). Based on the soils of the Kabini basin 
(Fig. 3) have grouped into SCS hydro groups of (A, B, C, 
and D), and Land use land cover (Fig. 4) correlated with the 
(Fig. 3) and generated the SCS-CN value (Fig. 5) for the 
Kabini basin. 

TWI is a valuable tool in evaluating the potential 
susceptibility of an area to flooding. This index, developed 
by MJ Kirkby in 1975, integrates two key topographic 
characteristics: slope and upslope contributing area. TWI 
with higher values indicates areas with greater potential for 

water accumulation and, consequently, higher susceptibil-
ity to flooding. This is because a larger upslope contributing 
area (A) and a lower slope (β) lead to slower water flow and 
increased likelihood of ponding. Conversely, Lower TWI 
values represent areas with better drainage capabilities due 
to steeper slopes and smaller contributing areas. These areas 
are generally considered less susceptible to flooding. 

The topographic position index (TPI) is another valuable 
tool for assessing flood susceptibility. It enables us to 
characterize the landscape's morphological features by 
analysing and categorizing slope gradients. This index serves 
as a means of delineating slope positions and identifying 
various geomorphological types.

Stream density is crucial in influencing flooding 
events, especially in areas with high stream density. These 
regions often face limited channel capacity, leading to 
difficulties managing increased water flow during heavy 
rainfall. In mountainous areas like the Kabini river basin, 
numerous tributaries from hills and foothills feed into the 
main river, such as the Nugu, Hullahalla, Suvarnavathi, and 

Kapila rivers. Human interventions like dams, such as the 
Kabini dam near Beechanahalli village, alter drainage 
patterns by regulating downstream water flow. 

The stream power index (SPI), developed by Lane in 
1955, assesses an area's susceptibility to flooding based on 
the erosive power of flowing water, influenced by factors 
like catchment area and slope gradient.

Normalized difference vegetation index (NDVI) is a 
widely used remote sensing metric that quantifies vegeta-
tion health and density by measuring the difference between 
near-infrared and visible red light reflected by vegetation.

Weighted geometric mean (WGM) is selectively adopted 
by Xu ( ); Yousefi et al. ( ); Tennakoon ( ); 
Krejčí, et al. ( ); Shekar, et al. ( ); Melese, et al. 
( ) and the same applied to the current study for 
compiling the flood hazard maps. 

|  

3.1 |  Average Annual Rainfall

Rainfall significantly affects flood susceptibility, as higher 
rainfall leads to more surface water accumulation, exceed-
ing soil and drainage system capacities. The Kabini catch-
ment, with a tropical sub-humid climate, receives 800-1200 
mm (IMD, Pune) of rainfall annually (Fig. 2), predomi-
nantly during the southwest monsoon (June-Sept) and to a 
lesser extent from the northeast monsoon (Oct-Dec). 
Despite moderate rainfall, the region experiences high 
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3  RESULTS AND DISCUSSION

  

evapotranspiration (1200-1550 mm/yr), creating a semi-
arid condition. The climate is characterized by moderate 
monsoon-influenced rainfall, high evapotranspiration, and 
variable rainfall patterns.

3.2 |  Rainfall Runoff

The breakdown of soil subgroups and hydro groups along 
2with their respective areas in (km ) of the Kabini basin 

showed that the soil subgroups range from Typic 
Haplustalfs to Lithic Rhodustalfs, each belonging to a hydro 
group categorized as A, B, C, or D. Among the soil sub-
groups, Typic Haplustalfs occupies the largest area with 

2631.54 km , followed closely by Aquic Haplustepts at 
2 2606.22 km  and Typic Haplustepts at 573.60 km . Pachic 

Argiustolls and Typic Rhodustalfs also cover substantial 
2 2areas, with 490.68 km  and 486.49 km , respectively. Notably, 

Lithic Ustorthents, Waterbodies, and Impervious Surfaces 
2 2represent smaller areas, with 169.64 km , 169.12 km , and 

2145.21 km , respectively. These classifications provide 
valuable insights into the distribution of soil subgroups and 
hydro groups within the studied area, facilitating informed 
land management and environmental planning decisions 
based on soil characteristics and hydrological consider-
ations. 

3.3 |  Elevation and Slope

The Kabini basin encompasses portions of the Western 
ghats, a mountain range known for its rugged terrain and 
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|  

3.1 |  Average Annual Rainfall

Rainfall significantly affects flood susceptibility, as higher 
rainfall leads to more surface water accumulation, exceed-
ing soil and drainage system capacities. The Kabini catch-
ment, with a tropical sub-humid climate, receives 800-1200 
mm (IMD, Pune) of rainfall annually (Fig. 2), predomi-
nantly during the southwest monsoon (June-Sept) and to a 
lesser extent from the northeast monsoon (Oct-Dec). 
Despite moderate rainfall, the region experiences high 
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evapotranspiration (1200-1550 mm/yr), creating a semi-
arid condition. The climate is characterized by moderate 
monsoon-influenced rainfall, high evapotranspiration, and 
variable rainfall patterns.

3.2 |  Rainfall Runoff

The breakdown of soil subgroups and hydro groups along 
2with their respective areas in (km ) of the Kabini basin 

showed that the soil subgroups range from Typic 
Haplustalfs to Lithic Rhodustalfs, each belonging to a hydro 
group categorized as A, B, C, or D. Among the soil sub-
groups, Typic Haplustalfs occupies the largest area with 

2631.54 km , followed closely by Aquic Haplustepts at 
2 2606.22 km  and Typic Haplustepts at 573.60 km . Pachic 

Argiustolls and Typic Rhodustalfs also cover substantial 
2 2areas, with 490.68 km  and 486.49 km , respectively. Notably, 

Lithic Ustorthents, Waterbodies, and Impervious Surfaces 
2 2represent smaller areas, with 169.64 km , 169.12 km , and 

2145.21 km , respectively. These classifications provide 
valuable insights into the distribution of soil subgroups and 
hydro groups within the studied area, facilitating informed 
land management and environmental planning decisions 
based on soil characteristics and hydrological consider-
ations. 

3.3 |  Elevation and Slope

The Kabini basin encompasses portions of the Western 
ghats, a mountain range known for its rugged terrain and 
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FIGURE 5    SCS-Soil CN Curve

FIGURE 4    Land use

FIGURE 3    Soil Texture

tion of floodwaters, ultimately impacting the risk of 
inundation in different morphologies of the topography. 
Landforms with base-level elevations are generally more 
susceptible to flooding due to their proximity to water 
sources like rivers, lakes, and coastlines. These areas are the 
first to experience inundation during flood events as 

flatter slopes generally exhibit higher susceptibility, the 
interplay with other topographical and hydrological elements 
necessitates a holistic approach to flood risk evaluation. 

high elevation. These highland areas contribute to the basin's 
headwaters, with numerous streams and rivers originating 
from the slopes and foothills. Understanding the influence 
of topography, particularly elevation and slope, is crucial in 
assessing flood susceptibility. These factors play a critical 
role in determining the flow path, velocity, and accumula-

overflowing water accumulates and has nowhere else to go. 
Both elevation (Fig. 6) and slope (Fig. 7) are critical factors 
shaping flood susceptibility. While low-lying areas and 

FIGURE 6    Digital Elevation Model
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3.4 | Topographic Wetness Index (TWI) & Topographic 

Position Index (TPI)

TWI (Fig. 8) is a crucial layer in mapping flood susceptibil-
ity and provides valuable insights into potential flood risk 
based on topographic characteristics. The TPI generates a 
map of continuous values (Fig. 9). Defining thresholds to 
classify landforms and valuable insights into flood suscepti-
bility by analysing relative elevation compared to the surround-
ing terrain is beneficial for geomorphological analysis. 

3.5 |  Drainage Density and Stream Power Index

Stream density, or drainage density (Fig. 10), refers to the 
concentration of streams or rivers within a specific geo-
graphic area. Higher SPI values indicate (Fig. 11) greater 
erosive power and potential flood risk due to increased 
water velocity and channel erosion, while lower SPI values 
suggest reduced flood susceptibility. 

3.6 |  Normalised Difference Vegetation Index (NDVI)

NDVI can provide valuable insights into flood impacts on 
vegetation and ecosystem health. During flooding events, 
NDVI values often decrease due to inundation and stress on 
vegetation caused by excessive water levels. Monitoring 
changes in NDVI before, during, and after floods can help 
assess flood extent, vegetation damage, and recovery rates. 
NDVI (Fig. 12). values range from -1 to 1, with higher 
values indicating healthier and denser vegetation cover. In 
the context of flooding, By integrating NDVI data with 
flood mapping and hydrological models, stakeholders can 

 

  

  

better understand the ecological consequences of flooding, 
plan effective mitigation measures, and support ecosystem 
restoration efforts in affected areas. 

3.7 |  Flood Susceptibility

In the context of flood susceptibility mapping in GIS, the 
"Weighted Geometric Mean" could combine multiple flood 
hazard layers into a single composite layer that reflects the 
relative importance of each layer. Weight assignment follows 
Satty's relative importance scale to the layers based on their 
reliability, accuracy, or importance in flood mapping. Weighted 
product is a mathematical method used in decision- making 
and multi-criteria analysis to combine multiple criteria or 
factors into a single composite score. Each criterion is 
assigned a weight that reflects its relative importance or 
priority in this method. The weighted product of each 
criterion is calculated by multiplying its value by its 
corresponding weight. Then, the individual weighted products 
are multiplied together to obtain the overall composite 
score. The weighted product method is beneficial when 
dealing with diverse criteria with varying importance levels. 
By assigning weights to each criterion, decision-makers can 
ensure that factors considered more significant have a greater 
influence on the final result. This allows for a systematic and 
transparent approach to decision-making, where the relative 
importance of different factors is explicitly considered. 

For each cell or pixel in the GIS raster layers, compute 
the weighted product of the values in the corresponding 
cells across all layers. This involves raising each value to the 

  

FIGURE 7    Slope
FIGURE 8    Topographic Wetness

FIGURE 9    Topographic Position Index
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By incorporating the weighted geometric mean approach, 
the resulting flood susceptible map (Fig. 13, 14) can better 
capture the complexities of flood risk by integrating 
multiple data sources while accounting for their varying 

power of its assigned weight.  Then, calculate the geometric 
mean of these weighted products across all layers. This is 
achieved by taking the nth root of the product, where n is the 
total number of layers. 
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TABLE  2    Susceptible Layers and Weights

1 Parameter Range Susceptibility Ranking Weights

Rainfall Intensity in mm < 800 mm Very Low 1/4 0.25
800 - 900 Low 1/4 0.25

900 - 1000 Moderate 1/3 0.33
1000 - 1100 High ½ 0.5
> 1100 mm Very High 1 1

2 SCS-CN Rainfall Runoff 0-100 Low to High                                      Min-Max Scaled to [0-1]

3 Elevation in m < 700 m Very High 1 1
700 - 800 High ½ 0.5
800 - 900 Moderate 1/3 0.33

900 - 1000 Low 1/4 0.25
> 1000 mm Very Low 1/4 0.25

4 Slope in Degrees < 1.5 (Flat) Very High 1 1
1.5-3.0 High 1/2 0.5
3.0-4.5 Moderate 1/3 0.33
4.5-6.0 Low 1/4 0.25

> 6.0 (Steep) Very Low 1/4 0.25

5 Topographic Wetness Index < 3.0 (Dry) Low 1/3 0.33
3.0 - 6.0 Moderate 1/2 0.5

> 6.0 (Wet) High 1 1

6 Topographic Position Index < -0.5 (Valley) High 1 1
-0.5 to 0.5 (Flat) Moderate 1/2 0.5

> 0.5 (Ridge) Low 1/3 0.33

7 Drainage Density 0-4 Low to High                                      Min-Max Scaler to [0-1]

8 Stream Power Index < 0 Low ½ 0.5
> 0 High 1 1

9 NDVI -1 to 1 High to Low                                      Min-Max Scaled to [1-0]

TABLE 3   Flood Susceptible Area in Kabini Catchment of 
Karnataka

2S.No. Flood Susceptibility Index [0-1], Low to High Area km

  1 0.00 - 0.50 (Low) 3258.29
  2 0.50 -  0.75 (Medium) 1354.80
  3 0.75 - 1.00 (High) 289.99

levels of importance or reliability. Flood susceptibility maps 
varied across the spatial scale and quantified that out of 

2 24899 km Kabini catchment, 289.99 km  have the higher 
2susceptibility, 1354.80 km  has moderate susceptibility, and 

23258.29 km  has low susceptibility.

3.8 |  Villages Prone to Flood Risk at Kabini Basin

In a comprehensive assessment (Fig. 15) covering 946 
villages from the districts of Mysore and Chamarajanagara, 
varying degrees of flood susceptibility were observed (Fig. 
14). Among these villages, 587 were identified as having no 
significant susceptibility to flooding, suggesting a relatively 
lower risk level. In contrast, 163 villages were categorized 
as experiencing less susceptibility to floods, indicating a 
potential but less imminent threat. Furthermore, 116 villages 
were classified under the medium susceptibility category, 
suggesting a moderate risk of flood events. Notably, 80 
villages were designated as high susceptibility areas, indicating 
a considerable vulnerability to flooding, requiring urgent 

  

attention and robust mitigation measures to minimize potential 
damage and ensure the safety of residents. These findings 
underscored the importance of proactive measures. They 
targeted interventions to address flood risks in high-
susceptibility areas while implementing preventive 
strategies in regions with lower susceptibility to enhance 
overall resilience to flooding events.

3.9 |  Validation of Result

To validate the flood risk assessment of the Kabini basin, 
this study references a detailed flood impact analysis of 
Nanjangud by Manjunatha and Basavarajappa ( ), 
where flash flooding from the Kabini (Kapila) river led to 
widespread inundation, severely affecting critical infra-
structure, agricultural areas, and local communities. In the 
Nanjangud study conducted by Manjunatha and Basavarajappa 
( ), significant inundation occurred in key locations, 
including the Srikanteshwara Temple, 16 Pillar Pavilion, 
Mallanamoole Mutt, Sutturu Mutt, Ayyappa Temple, 
Parashuram Temple, Chamundeshwari Temple, Chikkamma 
Chikka Devi Temple, and several streets near the main 
temple area. Additionally, crucial infrastructure like the 
Mysuru-Nanjangud National Highway (NH-766), Nanjangud 
Bridge, Hommaragalli Bridge, Madapura Bridge, and roads 
leading to Hosakote and Sutturu were submerged, disrupt-
ing connectivity and highlighting vulnerabilities in these 
flood-prone zones.
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FIGURE 10    Drainage Density

FIGURE 11    Stream Power Index
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Similarly, the Kabini basin flood assessment catego-
rized 946 villages into varying susceptibility levels, with 80 
villages identified as highly vulnerable to flooding. This 
alignment with the specific inundation patterns observed in 
Nanjangud provides a solid basis for validating the Kabini 
basin flood susceptibility classifications, particularly for 
high-risk areas. 

3.10 |  Discussion

|   

An extensive study of flood susceptibility across 946 
villages in Mysore and Chamarajanagara districts reveals 
varying levels of flood vulnerability. Among these villages, 
587 are classified as having low susceptibility to floods, 163 
as less susceptible, 116 as moderately susceptible, and 80 as 
highly susceptible. Factors such as rainfall intensity, soil 
moisture, elevation, slope, topographic indices, drainage 
characteristics, and vegetation cover were analyzed compre-
hensively to understand the underlying vulnerabilities. The 

  

4   CONCLUSIONS

Numerous approaches have been used in the considerable 
study on flood susceptibility mapping, with notable similari-
ties in the methods and results between studies. A recurring 
topic is the incorporation of various techniques to improve 
the precision and dependability of flood maps. Data, both 
spatial and non-spatial, were gathered from multiple sources. 
Selection of flood influencing factors were identified through 
average annual rainfall, rainfall runoff, elevation, slope, 
TWI, TPI, DD, STPI and NDVI. 

Using a MCDM technique based on Saaty's AHP's 
Relative Importance, each component was standardized and 
given a weight according to its impact on flooding. Each 
raster data set was given a relative weight using weight 
assignment techniques, and different flood impacting 
elements were integrated using a weighted product model. 
The current study used the WGM, which is selectively 
chosen, to create the flood hazard maps.

A total of 80 villages were found to be extremely 
vulnerable to flooding out of the 946 communities that were 
divided into different susceptibility levels by the Kabini 
basin flood assessment study. 

Further studies with modern techniques combining 
statistical and machine learning models can improve forecasts 
of flood susceptibility. The use of ensemble modelling 
techniques, which integrate several algorithms, has demon-
strated potential for enhancing the resilience of flood 
susceptibility maps. The ability of artificial intelligence to 
improve flood prediction models is further demonstrated by 
the integration of swarm intelligence algorithms into neural 
fuzzy-based machine learning ensembles and deep learning 
neural networks can enhance the accuracy of flood suscepti-
bility maps.
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study emphasizes the importance of adopting multi-
dimensional approaches in flood susceptibility mapping. 
This approach highlights the complex interactions contrib-
uting to flood susceptibility, enabling better-informed 
decision-making and targeted interventions. Several measures 
are recommended to mitigate flood risks effectively in these 
vulnerable areas. Firstly, implementing robust land use 
planning strategies that consider flood risk in urban and 
rural development plans can help reduce exposure to flood 
hazards. Secondly, it is crucial to enhance drainage infrastruc-
ture to improve its capacity and efficiency in managing 
increased water flow during heavy rainfall events. Also, 
promoting sustainable agricultural practices that minimize 
soil erosion and improve water retention can help reduce 
runoff and alleviate flood impacts. 
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Similarly, the Kabini basin flood assessment catego-
rized 946 villages into varying susceptibility levels, with 80 
villages identified as highly vulnerable to flooding. This 
alignment with the specific inundation patterns observed in 
Nanjangud provides a solid basis for validating the Kabini 
basin flood susceptibility classifications, particularly for 
high-risk areas. 

3.10 |  Discussion

|   
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varying levels of flood vulnerability. Among these villages, 
587 are classified as having low susceptibility to floods, 163 
as less susceptible, 116 as moderately susceptible, and 80 as 
highly susceptible. Factors such as rainfall intensity, soil 
moisture, elevation, slope, topographic indices, drainage 
characteristics, and vegetation cover were analyzed compre-
hensively to understand the underlying vulnerabilities. The 

  

4   CONCLUSIONS
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study emphasizes the importance of adopting multi-
dimensional approaches in flood susceptibility mapping. 
This approach highlights the complex interactions contrib-
uting to flood susceptibility, enabling better-informed 
decision-making and targeted interventions. Several measures 
are recommended to mitigate flood risks effectively in these 
vulnerable areas. Firstly, implementing robust land use 
planning strategies that consider flood risk in urban and 
rural development plans can help reduce exposure to flood 
hazards. Secondly, it is crucial to enhance drainage infrastruc-
ture to improve its capacity and efficiency in managing 
increased water flow during heavy rainfall events. Also, 
promoting sustainable agricultural practices that minimize 
soil erosion and improve water retention can help reduce 
runoff and alleviate flood impacts. 
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