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Soil organic carbon (SOC) pool has declined to a greater extent due to intensive tillage 
practices, continuous use of chemical fertilizers, removal of crop residues, etc. This 
creates the need of increasing SOC stocks and to improve carbon sequestration 
potential (CSP). It is important to know the spatial distribution of SOC stocks and CSP, 
which can be achieved with the help of digital soil mapping (DSM). In the present 
study, CSP was calculated based on the maximum potential of fine fraction (clay + silt), 
which can store the carbon to the actual carbon associated with the fine fraction. The 
mean observed SOC stock and CSP in different depths were in the range of 0.83-1.54 

-2 -2kg m and 5.52-6.51 kg m , respectively. Four machine learning (ML) algorithms 
[random forest (RF), support vector machine (SVM), cubist and artificial neural 
network (ANN)] were compared for prediction of SOC stock and CSP using 99 soil 
profiles data collected in Vemagal Hobli, Kolar district, Karnataka. The model 
performances were evaluated using uncertainty indicators such as coefficient of 

2determination (R ) and root mean squared error (RMSE). RF model performed better 
than SVM, cubist and ANN by explaining variability of 28-32% and 28-33% in 
prediction of SOC stock and CSP, respectively. The predicted SOC stock and CSP in 

-2 -2100 cm soil profile were found to be 3.0-5.8 kg m and 19.1-27.3 kg m , respectively. 
These digital maps help in understanding the spatial distribution of SOC stock and CSP 
in the study area.
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1. INTRODUCTION

The element carbon plays an essential role in the 

survival of all life forms on earth. It is vital for all life forms 

to take in and release carbon, whether for the manufacture of 

food or for respiration (FAO, 2016). The carbon pool in soil 

makes up the largest portion of the carbon pool in the 

atmosphere. The soil carbon pool is approximately 3.1 times 

larger than the atmospheric pool of 800 GT (Oelkers and 

Cole, 2008). It is estimated that one-third of the world's soil 

resources have been degraded. If these soils are restored, 

they will remove about 63 billion tonnes of carbon from the 

atmosphere (FAO, 2016). Combustion of fossil fuels and 

change in land use patterns are the principal anthropogenic 

activities that influence global carbon cycle (Adhikari et al., 

2020). About 20 Pg carbon (C) can be sequestered by soil in 

25 years, which is more than 10% of the anthropogenic 

emissions (FAO, 2016). As per Intergovernmental Panel on 

Climate Change (2007), the top 30 cm of soil contains about 

697 Pg C and the top 1 m contains about 1500 Pg C 

(Bernstein et al., 2008). The distribution of SOC stock in the 

ecosystem is highly influenced by the change in land use-

land cover (Sharma and Sharma, 2022). Intensive tillage 

practices, continuous use of chemical fertilizers, removal of 

crop residues results in rapid mineralization which causes 

the depletion of SOC pool (Sarma et al., 2013). SOC plays 

an important role in maintaining soil fertility and in 

sustaining the productivity of agro-ecosystems (Das et al., 

2019). It improves soil structure, hydraulic properties, 

aeration, water holding capacity, nutrient holding capacity 

and microbial activities.  Hence, it is important to increase 

SOC stocks and to improve soil organic CSP. An important 

aspect of SOC management is to know the spatial distribu-

Es 2td 7. 91

Vol. 51, No. 2, pp 154-163, 2023

Indian Journal of Soil Conservation
https://iaswc.com/ijsc-2023.html

A R T I C L E  I N F O ABSTRAC T

Mapping of soil organic carbon stock and carbon sequestration potential in Vemagal Hobli, Kolar 

district, Karnataka, India
2,

1 2Department of Soil Science and Agricultural Chemistry, University of Agricultural Sciences, Bangalore; ICAR-National Bureau of Soil Survey and Land Use 
Planning, Regional Centre, Bangalore.

*Corresponding author:

1 2 2 2 2 2G.K. Harikaran , S. Dharumarajan , R. Vasundhara , M. Lalitha , B. Kalaiselvi , S. Parvathy  and G. Ushakiran*

E-mail: sdharmag@gmail.com (S. Dharumarajan)

Indian J. Soil Cons.
Vol. 51, No. 2
August 2023

pp 82-170

Indexed in UGC CARE List
DOI Prefix : 10.59797
ISSN : 0970-3349 (Print)    l    ISSN : 0976-1721 (Online)

doi: 10.59797/ijsc.v51.i2.131



tion of carbon stocks and CSP which can be achieved with 

the help of DSM.

This DSM technique creates quantitative connections 

between soil properties using a collection of environmental 

factors and then regression equations are created to predict 

soil characteristics. These links can be combined to produce 

a computerised soil map of the study site (McBratney et al., 

2003). The digital soil map is a raster made up of two-

dimensional cells (pixels) arranged in a grid, each of which 

is assigned a specific geographic location and is filled with 

soil information (Carré et al., 2007). This approach yields 

accurate quantitative soil information at a faster rate through 

large scale dynamic monitoring of soil resources and by 

considering both spatial and temporal variability of soil 

properties. It makes use of different machine learning (ML) 

algorithms for accurate prediction of various soil properties. 

These algorithms can be divided into supervised or unsuper-

vised algorithms. In supervised learning techniques, both 

inputs and outputs are labelled in the process of training the 

model, whereas in unsupervised learning techniques, only 

the input is fed for training the model. The model will 

identify the hidden patterns and gives the desired output.

Several researchers carried out the digital mapping of 

SOC stock and organic CSP by prediction using different 

machine learning algorithms. Ließ et al. (2016) carried out 

the spatial prediction of SOC stocks in a complex tropical 

mountain landscape by comparing five ML algorithms (RF, 

ANN, multivariate adaptive regression splines, boosted regres-

sion tree (BRT) and SVM) using five times repetition of a 

tenfold cross-validation. They revealed that BRT algorithm 

resulted in the overall best model with a mean RMSE of 

0.12%. Rostaminia et al. (2021) predicted SOC stocks in 

Gavi plain located in the western Iran by comparing the 

performance of RF, cubist (Cu) along with random forest-

ordinary kriging (RF-OK) and cubist-ordinary kriging (Cu-

OK) hybrid ML models using 10-fold cross validation. They 
2revealed that RF-OK showed better performance (R  = 0.75, 

-1RMSE = 6.33 t ha ). Sreenivas et al. (2016) carried out 

estimation and mapping of the SOC and soil inorganic 

carbon (SIC) densities up to 100 cm depth or paralithic 

contact of whole India using RF model at 250 m spatial 

resolution. Using quantile regression forest, Dharumarajan 

et al. (2021) mapped the SOC stock of the western ghats 
2over an area of 56,763 km  and found that SOC stock 

2prediction performed better for the top layer (R  = 31-43%) 
2followed by a decline with depth (R  = 7-21%). 

Weismeier et al. (2014) estimated the CSP of soils in 

south-east Germany by calculating the potential SOC 

saturation of silt and clay particles based on 516 soil 

profiles. The findings indicated that farmland soils might 

hold significant amounts of extra SOC despite having a low 

degree of carbon saturation of just about 50% and reason-

ably high CSP was found in grassland soils, on the other 

hand, forest soils, were nearly saturated in carbon and had a 

low potential for carbon sequestration. Hammad et al. 

(2020) compared the CSP of various land use systems such 

as forests land, croplands, agroforests and orchards in the 

arid region of Pakistan at different depths (0-20, 20-40, 40-

60 and 60-80 cm). They revealed that the highest CSP 
-1(64.54 Mg ha ) noticed in forest land and the lowest was 

-1noticed in crop land (33.50 Mg ha ). Padarian et al. (2022) 

reported that SOC storage potential in the topsoil of global 

croplands is ranged from 29 to 65 Pg C.

Most of the works across the globe focussed only on the 

estimation of soil organic CSP rather than mapping of its 

spatial distribution. In this context, the present study was 

carried out in Vemagal Hobli, Kolar district of Karnataka 

with an aim to compare four ML algorithms (RF, SVM, cubist 

and ANN) for prediction of SOC stock and organic CSP and 

to map them along with uncertainty in four different depths 

(0-25, 25-50, 50-75 and 75-100 cm) using best ML algo-

rithm at 30 m resolution.

2.  MATERIALS AND METHODS

Study Area

The study area constitutes Vemagal Hobli (block), 

which is located in Kolar district, Karnataka. Location map 

of the study area is shown in Fig. 1. It covers an area of about 

13,948 ha and is geographically located at 13°9ˈ27.47 ̎ N to 

13°18ˈ17.13 ̎ N latitudes and 77°56'5.32''E to 78°5'10.43''E 

longitudes. It falls under eastern dry zone of Karnataka 

according to National Agriculture Research Project (NARP). 

According to ICAR agro ecological sub region, it lies in 

Central Karnataka plateau, hot, moist, semi-arid eco-sub 

region. Major geology in the region is granite and granite-

gneiss. The elevation is ranging from 820 to 1100 m above 

the mean sea level. The maximum temperature in the study 

area ranging from 30 to 36°C and minimum temperature 

ranging from 15 to 22°C. The area receives rainfall of 600 to 

700 mm annually. Major soil orders in the study area are 

Alfisols and Inceptisols. Area is classified under ustic soil 

moisture regime and iso hyperthermic soil temperature 

regime. The main cropping season is kharif and major crops 

of the study area are mango (Mangifera indica), finger 

millet (Eleusine coracana), red gram (Cajanus cajan), tomato 

(Solanum lycopersicum), mulberry (Morus albus), etc.

Soil Sampling and Analysis

High resolution satellite imagery (Sentinel-2) was used 

for identifying the soil profile locations. Field examination 

was carried out from 28.12.2021 to 19.02.2022 and about 46 

profile locations were identified for study. Profile locations 

were selected in transects based on variations in physiogra-
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-3OC = organic carbon in %; BD = bulk density in Mg m ; 

D = depth of each horizon in cm; G = % Gravel content /100.

Soil Organic CSP 

CSP was calculated by using the equations given 

below:

Potential C saturation (C ) = 4.09 + 0.37 × (clay (%) sat

+ silt (%) (Hassink, 1997).

C saturation deficit (C ) = C  - Csat-def sat cur

-1Where, C  = C saturation deficit (mg g ); C  = sat-def sat

-1Potential C saturation (mg g ); C  = Current C concentra-cur

tion of the clay and silt fraction.

-2 -2CSP (kg m ) = C  × BD × (1 - G) × D × 10sat-def

-2Where, CSP = Carbon sequestration potential (kg m ); 
-1C  = C saturation deficit (mg g ); BD = Soil bulk density sat-def

-3(Mg m ); D = Depth of the sampled soil layer (cm); G = % 

Gravel content / 100.

Preparation of Basic Satasets

In addition to 46 soil profiles studied during the survey, 

legacy datasets from 53 profiles of study area were also 

collected from National Bureau of Soil Survey and Land 

Use Planning (NBSS&LUP), Regional Centre, Hebbal, 

Bangalore. The data collected during present study was 

compiled with the legacy data. A total of about 99 profiles 

were considered for prediction of SOC stock and CSP. 

phy and cropping pattern of the study area. These soil 

profiles were studied to the depth of 200 cm or to the depth 

limited by bedrock. Representative horizon wise samples 

from each soil profile were collected covering the variabil-

ity of the study area. A total of 183 samples were collected 

from 46 identified profiles. Samples, to be determined for 

bulk density, had been collected in a metallic core of known 

volume, which was inserted in the soil horizon. The 

collected samples were shade dried in laboratory and then 

grounded using wooden pestle and mortar. After grinding, 

the samples were passed through a 2 mm sieve to separate 

coarse fragments (gravel, pebbles, roots, etc). For organic 

carbon (OC), the soil samples were further grinded finer and 

then sieved using 0.2 mm sieve.

The processed samples were analysed in laboratory 

using standard analytical methods. Bulk density was deter-

mined gravimetrically by using core method. SOC was 

determined by wet digestion method (Walkley and Black, 

1934). Particle size analysis was carried out by the interna-

tional pipette method (Jackson, 1973). 

SOC Stock

SOC stock was estimated for each layer of the soil 

profile by using the equation below (Dharumarajan et al., 

2021).

-2SOC stock (kg m ) = (OC %/100) × BD × D × (1- G) × 10.

-2Where, SOC stock = soil organic carbon stock in kg m ; 

Fig. 1. Location map of study area - Vemagal hobli, Kolar district, Karnataka, India

G.K. Harikaran et al. / Indian J. Soil Cons., 51(2): 154-163, 2023 156



tion of carbon stocks and CSP which can be achieved with 

the help of DSM.

This DSM technique creates quantitative connections 

between soil properties using a collection of environmental 

factors and then regression equations are created to predict 

soil characteristics. These links can be combined to produce 

a computerised soil map of the study site (McBratney et al., 

2003). The digital soil map is a raster made up of two-

dimensional cells (pixels) arranged in a grid, each of which 

is assigned a specific geographic location and is filled with 

soil information (Carré et al., 2007). This approach yields 

accurate quantitative soil information at a faster rate through 

large scale dynamic monitoring of soil resources and by 

considering both spatial and temporal variability of soil 

properties. It makes use of different machine learning (ML) 

algorithms for accurate prediction of various soil properties. 

These algorithms can be divided into supervised or unsuper-

vised algorithms. In supervised learning techniques, both 

inputs and outputs are labelled in the process of training the 

model, whereas in unsupervised learning techniques, only 

the input is fed for training the model. The model will 

identify the hidden patterns and gives the desired output.

Several researchers carried out the digital mapping of 

SOC stock and organic CSP by prediction using different 

machine learning algorithms. Ließ et al. (2016) carried out 

the spatial prediction of SOC stocks in a complex tropical 

mountain landscape by comparing five ML algorithms (RF, 

ANN, multivariate adaptive regression splines, boosted regres-

sion tree (BRT) and SVM) using five times repetition of a 

tenfold cross-validation. They revealed that BRT algorithm 

resulted in the overall best model with a mean RMSE of 

0.12%. Rostaminia et al. (2021) predicted SOC stocks in 

Gavi plain located in the western Iran by comparing the 

performance of RF, cubist (Cu) along with random forest-

ordinary kriging (RF-OK) and cubist-ordinary kriging (Cu-

OK) hybrid ML models using 10-fold cross validation. They 
2revealed that RF-OK showed better performance (R  = 0.75, 

-1RMSE = 6.33 t ha ). Sreenivas et al. (2016) carried out 

estimation and mapping of the SOC and soil inorganic 

carbon (SIC) densities up to 100 cm depth or paralithic 

contact of whole India using RF model at 250 m spatial 

resolution. Using quantile regression forest, Dharumarajan 

et al. (2021) mapped the SOC stock of the western ghats 
2over an area of 56,763 km  and found that SOC stock 

2prediction performed better for the top layer (R  = 31-43%) 
2followed by a decline with depth (R  = 7-21%). 

Weismeier et al. (2014) estimated the CSP of soils in 

south-east Germany by calculating the potential SOC 

saturation of silt and clay particles based on 516 soil 

profiles. The findings indicated that farmland soils might 

hold significant amounts of extra SOC despite having a low 

degree of carbon saturation of just about 50% and reason-

ably high CSP was found in grassland soils, on the other 

hand, forest soils, were nearly saturated in carbon and had a 

low potential for carbon sequestration. Hammad et al. 

(2020) compared the CSP of various land use systems such 

as forests land, croplands, agroforests and orchards in the 

arid region of Pakistan at different depths (0-20, 20-40, 40-

60 and 60-80 cm). They revealed that the highest CSP 
-1(64.54 Mg ha ) noticed in forest land and the lowest was 

-1noticed in crop land (33.50 Mg ha ). Padarian et al. (2022) 

reported that SOC storage potential in the topsoil of global 

croplands is ranged from 29 to 65 Pg C.

Most of the works across the globe focussed only on the 

estimation of soil organic CSP rather than mapping of its 

spatial distribution. In this context, the present study was 

carried out in Vemagal Hobli, Kolar district of Karnataka 

with an aim to compare four ML algorithms (RF, SVM, cubist 

and ANN) for prediction of SOC stock and organic CSP and 

to map them along with uncertainty in four different depths 

(0-25, 25-50, 50-75 and 75-100 cm) using best ML algo-

rithm at 30 m resolution.

2.  MATERIALS AND METHODS

Study Area

The study area constitutes Vemagal Hobli (block), 

which is located in Kolar district, Karnataka. Location map 

of the study area is shown in Fig. 1. It covers an area of about 

13,948 ha and is geographically located at 13°9ˈ27.47 ̎ N to 

13°18ˈ17.13 ̎ N latitudes and 77°56'5.32''E to 78°5'10.43''E 

longitudes. It falls under eastern dry zone of Karnataka 

according to National Agriculture Research Project (NARP). 

According to ICAR agro ecological sub region, it lies in 

Central Karnataka plateau, hot, moist, semi-arid eco-sub 

region. Major geology in the region is granite and granite-

gneiss. The elevation is ranging from 820 to 1100 m above 

the mean sea level. The maximum temperature in the study 

area ranging from 30 to 36°C and minimum temperature 

ranging from 15 to 22°C. The area receives rainfall of 600 to 

700 mm annually. Major soil orders in the study area are 

Alfisols and Inceptisols. Area is classified under ustic soil 

moisture regime and iso hyperthermic soil temperature 

regime. The main cropping season is kharif and major crops 

of the study area are mango (Mangifera indica), finger 

millet (Eleusine coracana), red gram (Cajanus cajan), tomato 

(Solanum lycopersicum), mulberry (Morus albus), etc.

Soil Sampling and Analysis

High resolution satellite imagery (Sentinel-2) was used 

for identifying the soil profile locations. Field examination 

was carried out from 28.12.2021 to 19.02.2022 and about 46 

profile locations were identified for study. Profile locations 

were selected in transects based on variations in physiogra-
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D = depth of each horizon in cm; G = % Gravel content /100.

Soil Organic CSP 

CSP was calculated by using the equations given 

below:

Potential C saturation (C ) = 4.09 + 0.37 × (clay (%) sat
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Use Planning (NBSS&LUP), Regional Centre, Hebbal, 

Bangalore. The data collected during present study was 

compiled with the legacy data. A total of about 99 profiles 

were considered for prediction of SOC stock and CSP. 

phy and cropping pattern of the study area. These soil 

profiles were studied to the depth of 200 cm or to the depth 

limited by bedrock. Representative horizon wise samples 

from each soil profile were collected covering the variabil-

ity of the study area. A total of 183 samples were collected 

from 46 identified profiles. Samples, to be determined for 

bulk density, had been collected in a metallic core of known 

volume, which was inserted in the soil horizon. The 

collected samples were shade dried in laboratory and then 

grounded using wooden pestle and mortar. After grinding, 

the samples were passed through a 2 mm sieve to separate 

coarse fragments (gravel, pebbles, roots, etc). For organic 

carbon (OC), the soil samples were further grinded finer and 

then sieved using 0.2 mm sieve.

The processed samples were analysed in laboratory 

using standard analytical methods. Bulk density was deter-

mined gravimetrically by using core method. SOC was 

determined by wet digestion method (Walkley and Black, 

1934). Particle size analysis was carried out by the interna-

tional pipette method (Jackson, 1973). 

SOC Stock

SOC stock was estimated for each layer of the soil 

profile by using the equation below (Dharumarajan et al., 

2021).

-2SOC stock (kg m ) = (OC %/100) × BD × D × (1- G) × 10.

-2Where, SOC stock = soil organic carbon stock in kg m ; 

Fig. 1. Location map of study area - Vemagal hobli, Kolar district, Karnataka, India
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Table: 1
Different covariates used for the prediction of soil properties

Covariates Source Resolution

Sentinel - 2 bands (b2-b12) 11 bands 10-60 m
Elevation (m) SRTM DEM 30 m
Aspect SRTM DEM 30 m
Channel network base level SRTM DEM 30 m
Channel network distance SRTM DEM 30 m
Analytical hill shading SRTM DEM 30 m
Closed depressions SRTM DEM 30 m
Convergence index SRTM DEM 30 m
MrRTF SRTM DEM 30 m
MrVBF SRTM DEM 30 m
Plan curvature SRTM DEM 30 m
Profile curvature SRTM DEM 30 m
Relative slope position SRTM DEM 30 m
Slope SRTM DEM 30 m
TPI SRTM DEM 30 m
TWI SRTM DEM 30 m
Total catchment SRTM DEM 30 m
Valley depth SRTM DEM 30 m
NDVI MOD13Q1 250 m_16 days
EVI MOD13Q1 250 m_16 days
Land surface temperature MOD11A1 1 km
Precipitation (mm) WorldClim 2 data 30 seconds
Average temperature (°C) WorldClim 2 data 30 seconds

MrRTF - Multi-resolution index of Ridge Top Flatness, MrVBF - 
Multi-resolution index of Valley Bottom Flatness, TPI - Topographic 
Position Index, TWI - Topographic Wetness Index, NDVI - Normalized 
Difference Vegetation Index, EVI - Enhanced Vegetation Index, 
SRTM DEM - Shuttle Radar Topography Mission Digital Elevation 
Model

Table: 2
Summary statistics of observed soil bulk density and textural fractions

Property Depth (cm) Min Max Mean SD Kurtosis Skewness CV (%)

-3BD (Mg m ) 0-25 1.08 1.59 1.58 0.16 1.07 -0.12 10.13
25-50 1.24 1.65 1.59 0.17 -0.79 -0.32 10.69
50-75 1.28 1.70 1.60 0.20 2.07 0.74 12.5

75-100 1.40 1.75 1.61 0.18 -0.71 0.12 11.18
Sand (%) 0-25 21.17 85.73 59.66 12.02 0.58 -0.74 20.15

25-50 10.73 73.64 49.51 10.88 2.06 -0.63 21.98
50-75 10.85 70.40 46.55 10.16 2.41 -0.84 21.83
75-100 11.35 64.57 45.70 10.53 1.56 -0.74 23.04

Silt (%) 0-25 2.50 36.79 13.51 7.25 0.18 0.62 53.66
25-50 2.20 35.47 14.37 6.91 -0.12 0.48 48.09
50-75 3.75 36.97 15.03 6.96 0.13 0.44 46.31
75-100 3.48 36.97 15.56 7.07 0.08 0.35 45.44

Clay (%) 0-25 5.17 61.69 26.79 11.34 0.43 0.44 42.33
25-50 7.09 65.24 36.14 11.27 0.70 0.32 31.18
50-75 18.34 68.72 38.20 10.98 0.51 0.70 28.74
75-100 10.18 67.80 37.98 11.65 1.11 0.29 30.67

Depth wise (0-25 cm, 25-50 cm, 50-75 cm and 75-100 cm) 

distribution of SOC stock and organic CSP were assessed by 

using weighted average method.

Environmental Attributes Considered

Different set of environmental covariates (Table 1) 

were used for prediction of SOC stock and organic CSP. 

Digital elevation model (DEM) was obtained from shuttle 

radar topography mission (SRTM) having 30 m resolution. 

The derivatives of DEM like multi-resolution index of 

valley bottom flatness (MrVBF), multi-resolution index of 

ridge top flatness (MrRTF), topographic position index 

(TPI), topographic wetness index (TWI), aspect, channel 

network base level, channel network distance (CND), 

analytical hill shading, closed depressions, convergence index, 

plan curvature, profile curvature, relative slope position 

(RSP), slope, total catchment and valley depth were derived 

by using system of automated geoscientific analyses i.e. 

Saga-GIS ver. 2.3.1. Normalized difference vegetation index 

(NDVI) and enhanced vegetation index (EVI) were obtained 

from moderate resolution imaging spectroradiometer (MODIS) 

data (MOD13Q1). Land surface temperature (LST) imagery 

was obtained from MODIS data (MOD11A1). Sentinel 2 

bands namely band 2 to band 12 were also used as variable 

input. Precipitation and average temperature datasets were 

obtained from world climate version 2 data. All of these 

covariates were resampled to a spatial resolution of 30 m 

and also intersected to the sampling points for the prediction 

of SOC stock and organic CSP.

Modelling and Mapping

For the present study, four ML algorithms - RF, SVM, 

cubist and ANN were compared for the prediction of SOC 

stock and organic CSP.

RF model is an extension of regression tree model 

which works based on assemblage of a number of classifica-

tion and regression trees by means of two levels of random-

ization for each tree in the forest (Breiman, 2001). It is the 

most used model at present, since it improves the prediction 

accuracy and reduces model over fitting and it is non-

sensitive to missing data and has capacity to handle large 

number of both quantitative and categorical data 

(Dharumarajan et al., 2017). The number of tree (n ), tree

minimum number of samples at terminal node (n ) and min

number of predictors used for fitting the tree (M ) will try

decide the fitting of model. For the present study, random 

forest package (ver. 4.6-14) was used for running the RF 

model in R environment. This package helps in performing 

classification and regression operations.

SVM maintains all covariates to define a maximal 

margin which is the margin of tolerance using the support 

vectors (observations) and to separate or fit data linearly. 

The margin is the distance from the decision surface which 

ensures high generalization ability of the algorithm, making 

the results more applicable to the unseen data (Pradhan, 

2013). In addition, this approach applies kernel functions to 

map non-linear vectors to a very high dimensional space for 

solving non-linear problems. For performing statistical 

functions, e1071 package (ver. 1.7-9) was used in R 

environment (Cortes and Vapnik, 1995).

Cubist is a rule-based algorithm that has recently 

increased in popularity among digital soil mappers (Miller 

et al., 2015). It initially creates a tree structure from a pool of 

provided covariates and then it collapses paths through the 

tree to create rules using boosting training. Each rule 

contains a multiple linear regression (MLR) model for 

predicting the target variable under the conditions of the 

respective rule. The final model located at the terminal 

nodes shows a collection of MLR models for calculating 

predicted values. In addition, this ensemble model adds 

boosting to improve the prediction accuracy. Ensemble 

learning combines models produced by multiple repetitions 

of the same algorithm which usually obtains stronger 

Root Mean Squared Error (RMSE) = 

Where, pi and oi are predicted and observed values, 

respectively.

Uncertainty analysis was performed at 90% confidence 

interval using quantile random forest (QRF) model. The 

prediction uncertainty was evaluated by using prediction 

interval coverage percentage (PICP). A 30 m grid was 

created and all the environmental covariates were extracted 

for that grid. Among different algorithms used for study, the 

best algorithm was used to predict SOC stock and organic 

CSP at 30 m grid. Predicted properties were then mapped 

using point to raster tool of Arc-GIS ver. 10.7.1.

3.  RESULTS AND DISCUSSION

Summary Statistics

Table 2 shows the summary statistics of observed soil 

bulk density and textural fractions. The mean observed BD 

was found to increase with depth with coefficient of 

variation ranging from 10.13 to 12.50%. Higher variability 

in bulk density was observed in 50-75 cm depth. The mean 

of observed sand and silt content was found to decrease and 

increase with depth, respectively. The mean clay content 

exhibited an irregular trend with depth. The kurtosis was 

found to be positive in all depths in case of sand and clay 

content. The sand content was negatively skewed with 

depth, whereas silt and clay content were found to be 

positively skewed with depth. The variability in silt content 

was found to be decreasing with depth.

The mean observed SOC stock was found to be 1.54, 
-21.08, 0.93 and 0.83 kg m  in 0-25, 25-50, 50-75, 75-100 cm 

predictive performance than results produced from any of 

the models individually. In the present study, Cubist 

package (ver. 0.3.0) was used for running the cubist model 

in R environment. This package performs rule and instance-

based regression modeling.

ANN algorithm was inspired from the functioning of 

human brain through a network of neurons, this algorithm is 

composed of connections of components operating in 

parallel. It can be trained to perform a specific function and 

obtain certain output by adjusting the values of the connec-

tion weights between the components. The network is 

adjusted, based on a comparison of the secured output and 

targeted outcome, till the sum of square differences between 

them become minimum. The attractiveness of ANN comes 

from the remarkable information processing characteristics 

of the biological system such as non-linearity, high 

parallelism, robustness, fault and failure tolerance, learning, 

ability to handle imprecise and fuzzy information and their 

capability to generalize. An ANN can be regarded as a class 

of universal approximators that implements a non-linear, 

input-output mapping of a general nature (Prieto et al., 

2013). For training the ANN model in R environment, 

neuralnet package (ver. 1.44.2) was used.

All the 4 models considered for study were validated 

using 10-fold cross validation techniques with 20 times 

repetition. The predictive performance of algorithms was 

evaluated using uncertainty indicators such as coefficient of 
2 2 determination (R ) and RMSE. For good models, R should 

be equal or close to 1, whereas RMSE should be low or near 

to 0.

2Coefficient of determination (R ) 
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Table: 1
Different covariates used for the prediction of soil properties

Covariates Source Resolution

Sentinel - 2 bands (b2-b12) 11 bands 10-60 m
Elevation (m) SRTM DEM 30 m
Aspect SRTM DEM 30 m
Channel network base level SRTM DEM 30 m
Channel network distance SRTM DEM 30 m
Analytical hill shading SRTM DEM 30 m
Closed depressions SRTM DEM 30 m
Convergence index SRTM DEM 30 m
MrRTF SRTM DEM 30 m
MrVBF SRTM DEM 30 m
Plan curvature SRTM DEM 30 m
Profile curvature SRTM DEM 30 m
Relative slope position SRTM DEM 30 m
Slope SRTM DEM 30 m
TPI SRTM DEM 30 m
TWI SRTM DEM 30 m
Total catchment SRTM DEM 30 m
Valley depth SRTM DEM 30 m
NDVI MOD13Q1 250 m_16 days
EVI MOD13Q1 250 m_16 days
Land surface temperature MOD11A1 1 km
Precipitation (mm) WorldClim 2 data 30 seconds
Average temperature (°C) WorldClim 2 data 30 seconds

MrRTF - Multi-resolution index of Ridge Top Flatness, MrVBF - 
Multi-resolution index of Valley Bottom Flatness, TPI - Topographic 
Position Index, TWI - Topographic Wetness Index, NDVI - Normalized 
Difference Vegetation Index, EVI - Enhanced Vegetation Index, 
SRTM DEM - Shuttle Radar Topography Mission Digital Elevation 
Model

Table: 2
Summary statistics of observed soil bulk density and textural fractions

Property Depth (cm) Min Max Mean SD Kurtosis Skewness CV (%)

-3BD (Mg m ) 0-25 1.08 1.59 1.58 0.16 1.07 -0.12 10.13
25-50 1.24 1.65 1.59 0.17 -0.79 -0.32 10.69
50-75 1.28 1.70 1.60 0.20 2.07 0.74 12.5

75-100 1.40 1.75 1.61 0.18 -0.71 0.12 11.18
Sand (%) 0-25 21.17 85.73 59.66 12.02 0.58 -0.74 20.15

25-50 10.73 73.64 49.51 10.88 2.06 -0.63 21.98
50-75 10.85 70.40 46.55 10.16 2.41 -0.84 21.83
75-100 11.35 64.57 45.70 10.53 1.56 -0.74 23.04

Silt (%) 0-25 2.50 36.79 13.51 7.25 0.18 0.62 53.66
25-50 2.20 35.47 14.37 6.91 -0.12 0.48 48.09
50-75 3.75 36.97 15.03 6.96 0.13 0.44 46.31
75-100 3.48 36.97 15.56 7.07 0.08 0.35 45.44

Clay (%) 0-25 5.17 61.69 26.79 11.34 0.43 0.44 42.33
25-50 7.09 65.24 36.14 11.27 0.70 0.32 31.18
50-75 18.34 68.72 38.20 10.98 0.51 0.70 28.74
75-100 10.18 67.80 37.98 11.65 1.11 0.29 30.67

Depth wise (0-25 cm, 25-50 cm, 50-75 cm and 75-100 cm) 

distribution of SOC stock and organic CSP were assessed by 

using weighted average method.

Environmental Attributes Considered

Different set of environmental covariates (Table 1) 

were used for prediction of SOC stock and organic CSP. 

Digital elevation model (DEM) was obtained from shuttle 

radar topography mission (SRTM) having 30 m resolution. 

The derivatives of DEM like multi-resolution index of 

valley bottom flatness (MrVBF), multi-resolution index of 

ridge top flatness (MrRTF), topographic position index 

(TPI), topographic wetness index (TWI), aspect, channel 

network base level, channel network distance (CND), 

analytical hill shading, closed depressions, convergence index, 

plan curvature, profile curvature, relative slope position 

(RSP), slope, total catchment and valley depth were derived 

by using system of automated geoscientific analyses i.e. 

Saga-GIS ver. 2.3.1. Normalized difference vegetation index 

(NDVI) and enhanced vegetation index (EVI) were obtained 

from moderate resolution imaging spectroradiometer (MODIS) 

data (MOD13Q1). Land surface temperature (LST) imagery 

was obtained from MODIS data (MOD11A1). Sentinel 2 

bands namely band 2 to band 12 were also used as variable 

input. Precipitation and average temperature datasets were 

obtained from world climate version 2 data. All of these 

covariates were resampled to a spatial resolution of 30 m 

and also intersected to the sampling points for the prediction 

of SOC stock and organic CSP.

Modelling and Mapping

For the present study, four ML algorithms - RF, SVM, 

cubist and ANN were compared for the prediction of SOC 

stock and organic CSP.

RF model is an extension of regression tree model 

which works based on assemblage of a number of classifica-

tion and regression trees by means of two levels of random-

ization for each tree in the forest (Breiman, 2001). It is the 

most used model at present, since it improves the prediction 

accuracy and reduces model over fitting and it is non-

sensitive to missing data and has capacity to handle large 

number of both quantitative and categorical data 

(Dharumarajan et al., 2017). The number of tree (n ), tree

minimum number of samples at terminal node (n ) and min

number of predictors used for fitting the tree (M ) will try

decide the fitting of model. For the present study, random 

forest package (ver. 4.6-14) was used for running the RF 

model in R environment. This package helps in performing 

classification and regression operations.

SVM maintains all covariates to define a maximal 

margin which is the margin of tolerance using the support 

vectors (observations) and to separate or fit data linearly. 

The margin is the distance from the decision surface which 

ensures high generalization ability of the algorithm, making 

the results more applicable to the unseen data (Pradhan, 

2013). In addition, this approach applies kernel functions to 

map non-linear vectors to a very high dimensional space for 

solving non-linear problems. For performing statistical 

functions, e1071 package (ver. 1.7-9) was used in R 

environment (Cortes and Vapnik, 1995).

Cubist is a rule-based algorithm that has recently 

increased in popularity among digital soil mappers (Miller 

et al., 2015). It initially creates a tree structure from a pool of 

provided covariates and then it collapses paths through the 

tree to create rules using boosting training. Each rule 

contains a multiple linear regression (MLR) model for 

predicting the target variable under the conditions of the 

respective rule. The final model located at the terminal 

nodes shows a collection of MLR models for calculating 

predicted values. In addition, this ensemble model adds 

boosting to improve the prediction accuracy. Ensemble 

learning combines models produced by multiple repetitions 

of the same algorithm which usually obtains stronger 

Root Mean Squared Error (RMSE) = 

Where, pi and oi are predicted and observed values, 

respectively.

Uncertainty analysis was performed at 90% confidence 

interval using quantile random forest (QRF) model. The 

prediction uncertainty was evaluated by using prediction 

interval coverage percentage (PICP). A 30 m grid was 

created and all the environmental covariates were extracted 

for that grid. Among different algorithms used for study, the 

best algorithm was used to predict SOC stock and organic 

CSP at 30 m grid. Predicted properties were then mapped 

using point to raster tool of Arc-GIS ver. 10.7.1.

3.  RESULTS AND DISCUSSION

Summary Statistics

Table 2 shows the summary statistics of observed soil 

bulk density and textural fractions. The mean observed BD 

was found to increase with depth with coefficient of 

variation ranging from 10.13 to 12.50%. Higher variability 

in bulk density was observed in 50-75 cm depth. The mean 

of observed sand and silt content was found to decrease and 

increase with depth, respectively. The mean clay content 

exhibited an irregular trend with depth. The kurtosis was 

found to be positive in all depths in case of sand and clay 

content. The sand content was negatively skewed with 

depth, whereas silt and clay content were found to be 

positively skewed with depth. The variability in silt content 

was found to be decreasing with depth.

The mean observed SOC stock was found to be 1.54, 
-21.08, 0.93 and 0.83 kg m  in 0-25, 25-50, 50-75, 75-100 cm 

predictive performance than results produced from any of 

the models individually. In the present study, Cubist 

package (ver. 0.3.0) was used for running the cubist model 

in R environment. This package performs rule and instance-

based regression modeling.

ANN algorithm was inspired from the functioning of 

human brain through a network of neurons, this algorithm is 

composed of connections of components operating in 

parallel. It can be trained to perform a specific function and 

obtain certain output by adjusting the values of the connec-

tion weights between the components. The network is 

adjusted, based on a comparison of the secured output and 

targeted outcome, till the sum of square differences between 

them become minimum. The attractiveness of ANN comes 

from the remarkable information processing characteristics 

of the biological system such as non-linearity, high 

parallelism, robustness, fault and failure tolerance, learning, 

ability to handle imprecise and fuzzy information and their 

capability to generalize. An ANN can be regarded as a class 

of universal approximators that implements a non-linear, 

input-output mapping of a general nature (Prieto et al., 

2013). For training the ANN model in R environment, 

neuralnet package (ver. 1.44.2) was used.

All the 4 models considered for study were validated 

using 10-fold cross validation techniques with 20 times 

repetition. The predictive performance of algorithms was 

evaluated using uncertainty indicators such as coefficient of 
2 2 determination (R ) and RMSE. For good models, R should 

be equal or close to 1, whereas RMSE should be low or near 

to 0.

2Coefficient of determination (R ) 

157 G.K. Harikaran et al. / Indian J. Soil Cons., 51(2): 154-163, 2023 G.K. Harikaran et al. / Indian J. Soil Cons., 51(2): 154-163, 2023 158



soil depths, respectively. It was found to decrease with an 

increase in soil depth. The observed SOC stock exhibited 

positive kurtosis and skewness at all depths. The variation in 

carbon stock was found to be higher in 75-100 cm depth. On 

the other hand, the mean observed CSP showed an irregular 
-2trend with depth ranging from 5.52 to 6.51 kg m . The 

kurtosis and skewness were found to be negative at all 

depths. The variability in CSP was found to increase with 

depth (Table 3).

Table 4 shows the correlation analysis between SOC 

stock, CSP and environmental covariates. SOC stock and 

CSP were found to be significantly correlated with CND, 

convergence index, plan curvature at 5% level. CSP was 

found to exhibit significant negative correlation with RSP at 

5% level. Strong positive correlation (0.36*) was observed 

between CSP and convergence index.  

Comparison of Different Algorithms

SOC stock and CSP were predicted using different ML 

algorithms. The depth wise performance of four different 

algorithms in prediction of SOC stock and CSP is shown in 

Table 5. For prediction of SOC stock and CSP, the order of 

performance of algorithms is found to be RF > SVM > 

Cubist > ANN and RF > Cubist > SVM > ANN, respectively 
2with respect to R . The dynamic nature and amount of OC in 

the study area determines the prediction performance of OC 

stock. The performance of RF in predicting SOC stocks has 

been slightly reduced in sub-surface layer which is indi-
2cated by decrease of R  from 32 to 28%. Dharumarajan et al. 

(2021) also found that the model's performance is reduced 
2with an increase in depth (R  = 7-43%). The RF model 

2predicted CSP better with R  and RMSE of 28-33% and 
-2 0.59-1.77 kg m (Table 5). The prediction performance of 

CSP depends upon the distribution of SOC stock in the 

study area.

RF model outperformed other three models based on 
2uncertainty indicators - R  and RMSE in prediction of SOC 

stock and CSP. Apart from this aspect, it also improved the 

accuracy of the prediction compared to other models 

whereas Sreenivas et al. (2016) found land cover as the most 

important covariate for the prediction of OC stock. Akpa et 

al. (2016) found soil type, climate, vegetation indices and 

terrain attributes as important covariates in prediction of 

SOC stock. Convergence index was found to be the top-

most covariate in prediction of CSP. Gray et al. (2022) 

found that a combination of climate, parent material and 

vegetation cover influences soil CSP to a greater extent.

Prediction of SOC stock and CSP

Table 6 shows the summary statistics of predicted OC 

stock and CSP. The mean value of predicted OC stock was 

found to decrease with increase in depth (1.56 to 0.48 kg 
-2m ). The kurtosis was found to be negative at 0-25 cm depth, 

whereas SOC stocks at other depths shown positive kurtosis. 

The SOC stocks exhibited positive skewness at all depths. 

Higher OC stock in surface layer may be due to slow 

decomposition of organic matter because of reduced soil 

temperature and also due to more addition of biomass 

through litter deposition (Sreenivas et al., 2016; Srinivasan 

et al., 2019; Dharumarajan et al., 2021). The mean value of 
-2predicted CSP ranged from 5.54 to 6.52 kg m  and the 

coefficient of variation was found to be higher (9.36%) in 

25-50 cm depth. The kurtosis was found to be negative in 

25-50 cm depth and CSP was positively skewed in 75-100 

cm depth. Soils with lower OC stock generally have higher 

potential to sequester further carbon in them. Higher CSP 

(Breiman, 2001; Dharumarajan and Hegde, 2022). Akpa et 

al. (2016) found that the RF model performed better when 

compared to cubist and BRT in prediction of SOC stock. 

Gomes et al. (2019) also reported better predictive perfor-

mance of RF model by comparison with cubist, generalized 

linear model boosting and SVM in prediction of SOC stock. 

Uncertainty can be indicated by an indicator called PICP 

which indicates % of all observed values fitting within their 

prediction limits. Commonly used confidence interval for 

PICP is 90% which means that the true value can be found 9 

out of 10 times within the range of values (Dharumarajan et 

al., 2020). The PICP values were derived from QRF model. 

The PICP range of OC stock and CSP in the study area was 

found to be 83.6 to 87.1 and 84.5 to 86.3, respectively.

Environmental covariates play an important role in 

influencing the soil properties and in improving the 

prediction accuracy. Based on how accurate or inaccurate 

the prediction would be if one or more covariates were 

removed from the model, the RF model predicts the relative 

importance of various covariates (Prasad et al., 2006). In 

case of prediction of OC stock, band 4 of sentinel-2 imagery 

and TPI were found as most important covariates. Hilly and 

mountainous areas have more OC stock due to the presence 

of dense forests which contributes to more biomass in the 

soil. Dharumarajan et al. (2021) found elevation as the most 

important variable for surface prediction of OC stock, 

Table: 3
Summary statistics of observed SOC stock and CSP

Property Depth (cm) Min Max Mean SD Kurtosis Skewness CV (%)

-2SOC stock (kg m ) 0-25 0.35 4.64 1.54 0.97 2.17 1.54 62.99
25-50 0.23 3.62 1.08 0.67 4.73 1.87 62.04
50-75 0.15 2.99 0.93 0.61 3.34 1.63 65.59

75-100 0.15 2.92 0.83 0.59 2.70 1.54 71.08
-2CSP (kg m ) 0-25 2.09 8.37 5.52 1.44 -0.13 -0.26 26.09

25-50 2.27 9.92 6.51 1.90 -0.62 -0.37 29.19
50-75 2.61 10.10 6.38 1.89 -0.54 -0.41 29.62

75-100 2.35 9.70 5.98 1.87 -0.76 -0.04 31.27

Table: 4
Correlation analysis between surface SOC stock, CSP and 
environmental covariates

Properties / Covariates SOC stock CSP

B2 -0.01 -0.01
B3 -0.01 -0.01
B4 -0.04 -0.04
B5 -0.05 -0.05
B6 -0.02 -0.02
B7 -0.04 -0.04
B8 0.10 0.11
B9 0.19 0.19
B10 -0.06 -0.06
B11 -0.09 -0.09
B12 -0.07 -0.07
NDVI -0.01 -0.01
EVI 0.07 0.07
LST -0.01 -0.01
DEM -0.05 -0.05
Aspect -0.05 -0.05
CNBL 0.09 0.09
CND -0.31* -0.31*
AHS -0.08 -0.08
CD -0.16 -0.02
CI 0.30* 0.36*
MrRTF -0.01 0.10
MrVBF -0.25 -0.08
Plan curvature 0.32* 0.33*
Profile curvature 0.25 0.16
RSP -0.04 -0.33*
Slope 0.17 0.01
TPI 0.17 0.09
TWI -0.08 0.05
Total catchment -0.11 0.1
Valley depth -0.02 0.04
Precipitation 0.03 -0.07
Average temperature -0.07 -0.10

*Significant correlation at 5% level     

B2-B12: Bands of sentinel-2 satellite imagery, NDVI: Normalised 
Difference Vegetation Index, EVI: Enhanced Vegetation Index, LST: Land 
Surface Temperature, DEM: Digital Elevation Model, CNBL: Channel 
Network Base Level, CND: Channel Network Distance, AHS: Analytical 
Hill Shading, CD: Closed Depressions, CI: Convergence Index, MrRTF: 
Multi-resolution index of Ridge Top Flatness, MrVBF: Multi-resolution 
index of Valley Bottom Flatness, RSP: Relative Slope Position, TPI: 
Topographic Position Index, TWI: Topographic Wetness Index

Table: 5
Performance of different models for prediction of SOC stock and CSP

Properties Depth (cm)                    SVM                                RF                      Cubist                        ANN

2 2 2 2R RMSE R RMSE R RMSE R RMSE

-2SOC stock (kg m ) 0-25 0.28 0.87 0.32 0.85 0.22 0.98 0.24 1.00
25-50 0.27 0.66 0.31 0.59 0.29 0.61 0.23 0.73
50-75 0.30 0.63 0.31 0.56 0.27 0.58 0.26 0.67

75-100 0.25 0.59 0.28 0.53 0.26 0.56 0.23 0.66
-2CSP (kg m ) 0-25 0.25 1.44 0.28 1.42 0.17 1.53 0.22 1.65

25-50 0.25 1.85 0.31 0.59 0.29 0.61 0.23 0.73
50-75 0.21 1.87 0.33 1.77 0.31 1.91 0.25 1.93

75-100 0.28 1.71 0.31 1.69 0.24 1.89 0.25 1.93

Table: 6
Summary statistics of predicted OC stock and CSP

Property Depth (cm) Min Max Mean SD Kurtosis Skewness CV (%)

-2SOC stock (kg m ) 0-25 0.91 2.51 1.56 0.27 -0.43 0.14 17.31
25-50 0.68 1.76 1.04 0.13 6.08 1.11 12.50
50-75 0.42 1.20 0.69 0.12 2.19 1.00 17.39

75-100 0.25 0.98 0.48 0.08 5.89 1.94 16.67
-2CSP (kg m ) 0-25 4.39 6.55 5.54 0.25 3.38 -0.41 4.51

25-50 4.88 8.07 6.52 0.61 -0.91 -0.38 9.36
50-75 4.19 7.54 6.02 0.51 0.59 -0.08 8.47

75-100 4.47 6.83 5.58 0.22 3.34 0.34 3.94
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soil depths, respectively. It was found to decrease with an 

increase in soil depth. The observed SOC stock exhibited 

positive kurtosis and skewness at all depths. The variation in 

carbon stock was found to be higher in 75-100 cm depth. On 

the other hand, the mean observed CSP showed an irregular 
-2trend with depth ranging from 5.52 to 6.51 kg m . The 

kurtosis and skewness were found to be negative at all 

depths. The variability in CSP was found to increase with 

depth (Table 3).

Table 4 shows the correlation analysis between SOC 

stock, CSP and environmental covariates. SOC stock and 

CSP were found to be significantly correlated with CND, 

convergence index, plan curvature at 5% level. CSP was 

found to exhibit significant negative correlation with RSP at 

5% level. Strong positive correlation (0.36*) was observed 

between CSP and convergence index.  

Comparison of Different Algorithms

SOC stock and CSP were predicted using different ML 

algorithms. The depth wise performance of four different 

algorithms in prediction of SOC stock and CSP is shown in 

Table 5. For prediction of SOC stock and CSP, the order of 

performance of algorithms is found to be RF > SVM > 

Cubist > ANN and RF > Cubist > SVM > ANN, respectively 
2with respect to R . The dynamic nature and amount of OC in 

the study area determines the prediction performance of OC 

stock. The performance of RF in predicting SOC stocks has 

been slightly reduced in sub-surface layer which is indi-
2cated by decrease of R  from 32 to 28%. Dharumarajan et al. 

(2021) also found that the model's performance is reduced 
2with an increase in depth (R  = 7-43%). The RF model 

2predicted CSP better with R  and RMSE of 28-33% and 
-2 0.59-1.77 kg m (Table 5). The prediction performance of 

CSP depends upon the distribution of SOC stock in the 

study area.

RF model outperformed other three models based on 
2uncertainty indicators - R  and RMSE in prediction of SOC 

stock and CSP. Apart from this aspect, it also improved the 

accuracy of the prediction compared to other models 

whereas Sreenivas et al. (2016) found land cover as the most 

important covariate for the prediction of OC stock. Akpa et 

al. (2016) found soil type, climate, vegetation indices and 

terrain attributes as important covariates in prediction of 

SOC stock. Convergence index was found to be the top-

most covariate in prediction of CSP. Gray et al. (2022) 

found that a combination of climate, parent material and 

vegetation cover influences soil CSP to a greater extent.

Prediction of SOC stock and CSP

Table 6 shows the summary statistics of predicted OC 

stock and CSP. The mean value of predicted OC stock was 

found to decrease with increase in depth (1.56 to 0.48 kg 
-2m ). The kurtosis was found to be negative at 0-25 cm depth, 

whereas SOC stocks at other depths shown positive kurtosis. 

The SOC stocks exhibited positive skewness at all depths. 

Higher OC stock in surface layer may be due to slow 

decomposition of organic matter because of reduced soil 

temperature and also due to more addition of biomass 

through litter deposition (Sreenivas et al., 2016; Srinivasan 

et al., 2019; Dharumarajan et al., 2021). The mean value of 
-2predicted CSP ranged from 5.54 to 6.52 kg m  and the 

coefficient of variation was found to be higher (9.36%) in 

25-50 cm depth. The kurtosis was found to be negative in 

25-50 cm depth and CSP was positively skewed in 75-100 

cm depth. Soils with lower OC stock generally have higher 

potential to sequester further carbon in them. Higher CSP 

(Breiman, 2001; Dharumarajan and Hegde, 2022). Akpa et 

al. (2016) found that the RF model performed better when 

compared to cubist and BRT in prediction of SOC stock. 

Gomes et al. (2019) also reported better predictive perfor-

mance of RF model by comparison with cubist, generalized 

linear model boosting and SVM in prediction of SOC stock. 

Uncertainty can be indicated by an indicator called PICP 

which indicates % of all observed values fitting within their 

prediction limits. Commonly used confidence interval for 

PICP is 90% which means that the true value can be found 9 

out of 10 times within the range of values (Dharumarajan et 

al., 2020). The PICP values were derived from QRF model. 

The PICP range of OC stock and CSP in the study area was 

found to be 83.6 to 87.1 and 84.5 to 86.3, respectively.

Environmental covariates play an important role in 

influencing the soil properties and in improving the 

prediction accuracy. Based on how accurate or inaccurate 

the prediction would be if one or more covariates were 

removed from the model, the RF model predicts the relative 

importance of various covariates (Prasad et al., 2006). In 

case of prediction of OC stock, band 4 of sentinel-2 imagery 

and TPI were found as most important covariates. Hilly and 

mountainous areas have more OC stock due to the presence 

of dense forests which contributes to more biomass in the 

soil. Dharumarajan et al. (2021) found elevation as the most 

important variable for surface prediction of OC stock, 

Table: 3
Summary statistics of observed SOC stock and CSP

Property Depth (cm) Min Max Mean SD Kurtosis Skewness CV (%)

-2SOC stock (kg m ) 0-25 0.35 4.64 1.54 0.97 2.17 1.54 62.99
25-50 0.23 3.62 1.08 0.67 4.73 1.87 62.04
50-75 0.15 2.99 0.93 0.61 3.34 1.63 65.59

75-100 0.15 2.92 0.83 0.59 2.70 1.54 71.08
-2CSP (kg m ) 0-25 2.09 8.37 5.52 1.44 -0.13 -0.26 26.09

25-50 2.27 9.92 6.51 1.90 -0.62 -0.37 29.19
50-75 2.61 10.10 6.38 1.89 -0.54 -0.41 29.62

75-100 2.35 9.70 5.98 1.87 -0.76 -0.04 31.27

Table: 4
Correlation analysis between surface SOC stock, CSP and 
environmental covariates

Properties / Covariates SOC stock CSP

B2 -0.01 -0.01
B3 -0.01 -0.01
B4 -0.04 -0.04
B5 -0.05 -0.05
B6 -0.02 -0.02
B7 -0.04 -0.04
B8 0.10 0.11
B9 0.19 0.19
B10 -0.06 -0.06
B11 -0.09 -0.09
B12 -0.07 -0.07
NDVI -0.01 -0.01
EVI 0.07 0.07
LST -0.01 -0.01
DEM -0.05 -0.05
Aspect -0.05 -0.05
CNBL 0.09 0.09
CND -0.31* -0.31*
AHS -0.08 -0.08
CD -0.16 -0.02
CI 0.30* 0.36*
MrRTF -0.01 0.10
MrVBF -0.25 -0.08
Plan curvature 0.32* 0.33*
Profile curvature 0.25 0.16
RSP -0.04 -0.33*
Slope 0.17 0.01
TPI 0.17 0.09
TWI -0.08 0.05
Total catchment -0.11 0.1
Valley depth -0.02 0.04
Precipitation 0.03 -0.07
Average temperature -0.07 -0.10

*Significant correlation at 5% level     

B2-B12: Bands of sentinel-2 satellite imagery, NDVI: Normalised 
Difference Vegetation Index, EVI: Enhanced Vegetation Index, LST: Land 
Surface Temperature, DEM: Digital Elevation Model, CNBL: Channel 
Network Base Level, CND: Channel Network Distance, AHS: Analytical 
Hill Shading, CD: Closed Depressions, CI: Convergence Index, MrRTF: 
Multi-resolution index of Ridge Top Flatness, MrVBF: Multi-resolution 
index of Valley Bottom Flatness, RSP: Relative Slope Position, TPI: 
Topographic Position Index, TWI: Topographic Wetness Index

Table: 5
Performance of different models for prediction of SOC stock and CSP

Properties Depth (cm)                    SVM                                RF                      Cubist                        ANN

2 2 2 2R RMSE R RMSE R RMSE R RMSE

-2SOC stock (kg m ) 0-25 0.28 0.87 0.32 0.85 0.22 0.98 0.24 1.00
25-50 0.27 0.66 0.31 0.59 0.29 0.61 0.23 0.73
50-75 0.30 0.63 0.31 0.56 0.27 0.58 0.26 0.67

75-100 0.25 0.59 0.28 0.53 0.26 0.56 0.23 0.66
-2CSP (kg m ) 0-25 0.25 1.44 0.28 1.42 0.17 1.53 0.22 1.65

25-50 0.25 1.85 0.31 0.59 0.29 0.61 0.23 0.73
50-75 0.21 1.87 0.33 1.77 0.31 1.91 0.25 1.93

75-100 0.28 1.71 0.31 1.69 0.24 1.89 0.25 1.93

Table: 6
Summary statistics of predicted OC stock and CSP

Property Depth (cm) Min Max Mean SD Kurtosis Skewness CV (%)

-2SOC stock (kg m ) 0-25 0.91 2.51 1.56 0.27 -0.43 0.14 17.31
25-50 0.68 1.76 1.04 0.13 6.08 1.11 12.50
50-75 0.42 1.20 0.69 0.12 2.19 1.00 17.39

75-100 0.25 0.98 0.48 0.08 5.89 1.94 16.67
-2CSP (kg m ) 0-25 4.39 6.55 5.54 0.25 3.38 -0.41 4.51

25-50 4.88 8.07 6.52 0.61 -0.91 -0.38 9.36
50-75 4.19 7.54 6.02 0.51 0.59 -0.08 8.47

75-100 4.47 6.83 5.58 0.22 3.34 0.34 3.94
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might also be due to the presence of more clay and silt 

fractions (Wiesmeier et al., 2014).

The predicted and uncertainty OC stock and CSP maps 

at 0-100 cm depth are depicted in Fig's. 2 and 3, respectively. 

The predicted SOC stock and CSP for 100 cm soil profile 
-2 -2were found to be 3.0-5.8 kg m and 19.1-27.3 kg m , 

respectively. From the predicted map of CSP, it was found 

that soils of hilly areas exhibited lower CSP. This may be 

due to the presence of higher SOC stocks. Uncertainty was 

found to be moderate in prediction of SOC stock. In case of 

prediction of CSP, moderate to high uncertainty was 

noticed. The reason for high uncertainty might be due to the 

existence of limited datasets and due to different landforms 

prevailing in the study area. 

4. CONCLUSIONS

From the study, it is clear that the SOC stock is influ-

enced by SOC content, bulk density, gravel content and soil 

depth. Land use system and cultivation practices such as 

tillage, manuring, etc. also influences SOC stock to a greater 

extent. The CSP was found to be inversely related with SOC 

stock i.e. soils with higher OC stock generally have lower 

potential to sequester further carbon in them and vice-versa. 

The presence of more fine soil fractions (clay and silt 

fractions) improves the CSP of soils. It is important to 

increase the OC stock levels in soil as it not only improves 

the soil fertility but also reduces the emission of carbon 

dioxide into the atmosphere to a greater extent. The results 

of the study show the effectiveness of RF model in predic-

tion of SOC stock and CSP than other models. The predic-

tion accuracy of RF model can still be improved by the 

addition of more datasets and more suitable environmental 

covariates. More samples need to be collected in areas 

having higher uncertainty for accurate prediction. Long 

term research should be carried out to assess the potential of 

new management practices in C sequestration and its 

stabilization on a long-term basis by the use of advanced 

ML algorithms. 
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might also be due to the presence of more clay and silt 

fractions (Wiesmeier et al., 2014).

The predicted and uncertainty OC stock and CSP maps 

at 0-100 cm depth are depicted in Fig's. 2 and 3, respectively. 

The predicted SOC stock and CSP for 100 cm soil profile 
-2 -2were found to be 3.0-5.8 kg m and 19.1-27.3 kg m , 

respectively. From the predicted map of CSP, it was found 

that soils of hilly areas exhibited lower CSP. This may be 

due to the presence of higher SOC stocks. Uncertainty was 

found to be moderate in prediction of SOC stock. In case of 

prediction of CSP, moderate to high uncertainty was 

noticed. The reason for high uncertainty might be due to the 

existence of limited datasets and due to different landforms 

prevailing in the study area. 

4. CONCLUSIONS

From the study, it is clear that the SOC stock is influ-

enced by SOC content, bulk density, gravel content and soil 

depth. Land use system and cultivation practices such as 

tillage, manuring, etc. also influences SOC stock to a greater 

extent. The CSP was found to be inversely related with SOC 

stock i.e. soils with higher OC stock generally have lower 

potential to sequester further carbon in them and vice-versa. 

The presence of more fine soil fractions (clay and silt 

fractions) improves the CSP of soils. It is important to 

increase the OC stock levels in soil as it not only improves 

the soil fertility but also reduces the emission of carbon 

dioxide into the atmosphere to a greater extent. The results 

of the study show the effectiveness of RF model in predic-

tion of SOC stock and CSP than other models. The predic-

tion accuracy of RF model can still be improved by the 

addition of more datasets and more suitable environmental 

covariates. More samples need to be collected in areas 

having higher uncertainty for accurate prediction. Long 

term research should be carried out to assess the potential of 

new management practices in C sequestration and its 

stabilization on a long-term basis by the use of advanced 

ML algorithms. 
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