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Selection of effective methods of evapotranspiration (ET) estimation has become a 
vital task in hydrological simulations using soil and water assessment tool (SWAT) at 
watershed scale. These methods are mostly selected based on input data availability 
and their applicability at regional scale. In this study, three potential evapotranspiration 
(PET) methods namely, hargreaves method (HA), penman-monteith (PM) method and 
priestly-taylor (PT) method inbuilt in the SWAT model were evaluated with the 
available climatic data of Kantamal catchment in Eastern India. The model perfor-
mance in each case was tested by matching the simulated streamflow with the observed 

2ones. The HA method was found to be the most suitable one with R , NSE, PBIAS and 
3 -1RMSE values of 0.94, 0.88, -17.0 and 217.6 m s  during calibration period, and 0.87, 

3 -1 0.83, -16.0 and 204. 08 m s during the validation period, respectively. PM and HA 
methods demonstrated comparable performance in simulating streamflow, however, 
the PT method exhibited lower performance compared to other two methods, 
indicating that it is not recommended for hydrological simulation studies using SWAT 
under similar agro-climatic conditions. 
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1. INTRODUCTION

Catchment scale management of water resources requires 
at least the quantitative knowledge of hydrological fluxes 
where water quality is not an issue. Accurate assessment of 
these fluxes is the basic need for watershed planning and 
management (Zhao et al., 2013; Panda et al., 2021a). As the 
pressure on fresh water sources is increasing day by day, the 
need of proper management of this precious resource is 
important for its sustainability and sustainability of mankind 
on earth surface (Larbi et al., 2020). Spatio-temporal 
assessment and direct measurement of the hydrological 
process like runoff, infiltration, evapotranspiration (ET), 
groundwater is quite difficult and sometimes unaffordable 
(Bizuneh et al., 2021; Nasiri et al., 2020). Therefore, 
nowadays with the advancement of computational technol-
ogy various kind of hydrological models have been 
developed starting from simplifies empirical black box 
model to data intensive physically based distributed models 

(Guug et al., 2020; Sahoo et al., 2021). In catchment scale 
hydrological models, different hydrological processes are 
either simulated using mathematical equations or derived 
from water balance or energy balance methods. ET is one of 
the most vital component of natural hydrological cycle and 
hence, its accurate estimation is very much crucial for 
physically based hydrological models like SWAT (Padhiary 
et al., 2018). ET is the movement of water from land based 
ecosystems to the atmosphere system in the form of water 
vapor. It constitutes about 50% of the precipitation in humid 
areas and about 90% of precipitation in arid zones (Zhao et 
al., 2013). ET is an invisible process and its actual measure-
ment is very difficult. It is the dominant part of crop water 
requirement. More than 95% of the absorbed water is 
transpired through stomatal opening in plant leaves 
(Sentelhas et al., 2010; Gemechu et al., 2021). Its precise 
estimation is not only important for water budgeting but 
also for climate change studies, irrigation scheduling, crop 
yield modelling, drought monitoring, and planning and 

Es 2td 7. 91

Vol. 51, No. 3, pp 196-208, 2023

Indian Journal of Soil Conservation
https://iaswc.com/ijsc-2023.html

A R T I C L E  I N F O ABSTRAC T

Performance of evapotranspiration methods for hydrological simulations using SWAT in a sub-

tropical and sub-humid catchment of India 
1, 2   2 2 2

Dwarika Mohan Das , Sanjay Kumar Raul , Bharat Chandra Sahoo , Jagadish Chandra Paul , Sangeeta Bhuyan , Soubhgya Laxmi 
2 2 2 3 4Ray , Dikshya Nayak , Ansuman Pati , Abinash Dalei  and Chinmaya Panda

1 2Krishi Vigyan Kendra, Jagatsinghpur, OUAT, Bhubaneswar; College of Agricultural Engineering and Technology, Odisha University of Agriculture and 
3 4Technology, Bhubaneswar; Swami Vivekanand College of Agricultural Engineering and Technology, Indira Gandhi Krishi Vishwavidyalaya, Raipur; Institute 

of Agricultural Sciences, Banaras Hindu University, Varanasi.

*

*Corresponding author:

E-mail: dwarikamohan2021@gmail.com (Dwarika Mohan Das)

DOI: 

Indexed in UGC CARE List
DOI Prefix : 10.59797
ISSN : 0970-3349 (Print)    l    ISSN : 0976-1721 (Online)

Indian J. Soil Cons.
Vol. 51, No. 3

December 2023
pp 171-264



management of fresh water resources (Falamarzi et al., 
2014; Panda et al., 2021a).

ET includes two processes namely evaporation and 
transpiration and convert liquid water to water vapor (Allen 
et al., 1998; Verstraeten et al., 2005). Evaporation occurs 
from land surface, water bodies, soil moisture, groundwater 
etc., whereas transpiration occurs from vegetation. PET is 
the highest rate of ET as per the climatic demand when 
water is plentiful in the plant root zone and the plant is not 
subjected to any kind of stress. Estimation of AET is very 
challenging, time consuming and expensive. Hence, indirect 
methods are most commonly used for its estimation, even in 
hydrological models also. 

The PET estimation methods are categorized into three 
major classes based on energy, temperature and mass 
transfer functions. Energy balance concept is applied for 
energy based methods. Xu and Singh (2000) in their study 
compared eight different energy balance methods named 
after the developers such as Makkink, Turc, Jensen and Haise, 
McGuinness and Bordne, Priestley and Taylor, Hargreaves, 
Doorenbos and Abtew. It was concluded that the Makkink, 
Priestley and Taylor, and Abtew methods outperformed the 
other methods. Under climatic data scarce condition, many 
researchers suggested that temperature-based ET methods 
are more useful than others. Seven different temperature 
based ET estimation methods were compared by Xu and 
Singh (2001). They reported that the Blaney-Criddle method 
(Blaney, 1959), the Hargreaves method (Hargreaves and 
Samani, 1985) and the Thornthwaite method (Thornthwaite, 
1948) performed better under limited data records. The 
method that is based on mass transfer is the oldest among all. 
It estimates potential evaporation from free water surface 
and uses the wind speed and vapor pressure deficit for 
estimation of ET. It is the first reported method of potential 
evaporation estimation which was proposed by Dalton in 
the year 1802 (Zhao et al., 2013). Later, Penman (1948) 
introduced another evaporation method on mass transfer 
principles that accounts lake evaporation.

The FAO 56 recommended PM method, a combination 
technique that includes all the three approaches in its 
formulation. It is the physically-based method widely used 
for ET estimation in hydrological models (Xie and Wang, 
2007; Liu et al., 2009; Buck-Sorlin et al., 2011; Zhang et al., 
2010; Liu et al., 2012; Li et al., 2011). Andersson (1992) 
compared the sensitivity of seven PET methods in HBV 
model and observed a slight improvement in accuracy of the 
model simulation by using the temperature based methods. 
The PM method showed better accuracy than other 
methods. Sensitivity of 27 PET methods in 308 basins were 
analyzed by Oudin et al. (2005) in 308 basins using four 
lumped hydrological models. It was reported that the 
temperature based and energy based methods showed better 
efficiency than the PM method. Kannan et al. (2007) 

which is the only significant river system in eastern India 
flowing through the states of Chhattisgarh and Odisha as 
shown Fig.1. The catchment's area spans between longi-
tudes 82°02′11″ to 84°18′56″E and latitudes 19°16′7″ to 20° 

244′12″N, covering 20,024 km . It is distributed across eight 
districts in Odisha, including Kalahandi, Bolangir, Nuapada, 
Kandhamal, Nabarangpur, Rayagada, Boudh, and Sonepur, 
and one district in Chhattisgarh, namely Gariabandh. 
Agriculture is the primary land use in the catchment, 
occupying over 50% of the area, where rice, pulses, millet, 
groundnut, sunflower, sugarcane, cotton, and vegetables are 
the dominant crops. The average annual rainfall in the 
catchment is 1360 mm, with 1170 mm received during the 
monsoon season between June and September. The catch-
ment's maximum temperature ranges between 19 to 43°C 
and minimum temperature ranges between 5 to 32°C in a 
year. The highest temperatures are typically experienced 
during the summer months of April and May and the lowest 
temperatures during the winter months of Dec and Jan.

In this study, effect of selecting different PET methods 
on the overall water balance of the catchment was studied 
using three PET estimation methods available in SWAT and 
best one is recommended for the study area. The detail of the 
methodology adopted is shown in Fig. 2. 

Data Requirement  

Primary data needed to run SWAT model are digital 

elevation model (DEM), soil, land use and climatic 
parameters. Different data sets collected from various 
sources / agencies to run the model are presented in Table 1. 
Observed streamflow data are obtained for model calibra-

compared the sensitivity of HA method with PM method for 
runoff simulation using SWAT. They concluded that the 
temperature based HA method outperformed the PM 
method.

SWAT, initially developed for the study of hydrological 
response from ungauged catchments, is a physically based 
model (Arnold et al., 1998; Samadi et al., 2017). At present, 
SWAT model is extensively used for simulating water yield, 
streamflow, soil moisture, evapotranspiration, nutrient yield, 
sediment yield and crop yield (Zhang et al., 2019; Yesuf et 
al., 2016; Bhatt et al., 2016; Larbi et al., 2020; Panda et al., 
2021b; Tola and Shetty, 2023). The popularity and versatil-
ity of the SWAT model have been enhanced in diverse fields 
of natural resource management due to the creation of the 
SWAT-calibration and uncertainty procedures (SWAT-CUP) 
model, which facilitates auto-calibration, sensitivity, and 
uncertainty analysis. The SWAT model incorporates three 
PET estimation techniques, namely PM, HA, and PT, to 
estimate ET (Aouissi et al., 2016). SWAT estimates AET 
using an integrated conversion method that takes into 

 account leaf area index and soil moisture extraction(Zhao et 
al., 2013; Vagheei et al., 2023). 

The PM method has been recognized as the universally 
accepted method for PET estimation (Allen et al., 1998; 
Jabloun and Sahli, 2008; Immerzeel and Droogers, 2008; 
Sentelhas et al., 2010). It requires daily climatic observa-
tions of minimum temperature, maximum temperature, 
relative humidity, wind speed and solar radiation. These 
data are generally not available in finer resolution due to 
lack of recording stations. The other two methods (HA and 
PT) can also provide acceptable results but need less 
intensive data than PM method. Under data scarce situation, 
SWAT uses a weather generator “WXGEN” database for 
generating an average climatic data for the entire world in 
absence of climate data records. 

Now-a-days, SWAT model is popularly used for agro-
hydrological simulation with lots of agricultural application 
like irrigation scheduling, water productivity optimization, 
crop yield prediction etc. Hence, selection of ET estimation 
method with respect to the climatic data availability is 
crucial for both agricultural and hydrological applications 
(Aouissi et al., 2016). Therefore, in this study a trial has 
been made to identify the most suitable ET estimation 
method that produces precise streamflow and catchment 
water balance and also the spatio-temporal variability in 
simulated PET in Kantamal catchment of Mahandi river 
basin of eastern India. 

2.  MATERIALS AND METHODS

Study Area 

This research was conducted within the Kantamal 
catchment located in the middle Mahanadi basin of India, 
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Fig. 1. Location map of Kantamal catchment
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management of fresh water resources (Falamarzi et al., 
2014; Panda et al., 2021a).
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transpiration and convert liquid water to water vapor (Allen 
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Table: 1
Sources of input data

Data Source Year

Soil NBSS&LUP (1:50000) (https://www.nbsslup.in/) 2006
Land use National Remote Sensing Centre (1:50000) (https://www.nrsc.gov.in/) (ISRO), Hyderabad 2014-15
Rainfall Recorded block-wise rainfall data from Special Relief Commissioner, Odisha (https://srcodisha.nic.in/) 2000-2018
Temperature 1º×1º gridded minimum and maximum temperature data from India Meteorological Department (IMD), Pune 2000-2018
Streamflow Daily discharge data (2000-2018) from Water Resources Information System of India (India-WRIS), CWC 2000-2018

(https://indiawris.gov.in/wris)
DEM Digital Elevation Model (DEM) from Shuttle Radar Topography Mission (SRTM 30) of USGS 2005

(http://srtm.csi.cgiar.org/) 

Table: 2
Soil physical properties 

Soil texture Soil bulk density Available water holding capacity Soil organic carbon Clay Silt Sand
-3(g cm ) (%v) (%)

Clay 1.32 16 0.51 45.7 32.3 22
Silty clay 1.27 15 0.49 42.3 47.6 10.1
Clay loam 1.4 14 0.48 33.9 28.1 38
Silty clay loam 1.34 16 0.47 32.3 49.5 18.2
Sandy clay loam 1.51 10 0.5 22.4 9.6 68
Loam 1.42 15 0.45 25.7 37.9 36.4
Sandy loam 1.49 10 0.2 17.8 20.2 62

SWAT Model

SWAT is a semi-distributed hydrological model. It was 
developed by the United States Department of Agriculture 
(USDA) - Agricultural Research Service (Arnold et al., 
1998). It divides a catchment into sub-watersheds and 
further to hydrological response units (HRUs). An HRU is 
the basic unit of hydrology having uniform land use, soil 
and slope (Arnold et al., 1998; Uniyal et al., 2015a, Das et 
al., 2022). The threshold limit for HRUs is an important 
consideration in SWAT modelling, and it has implications 
for deciding model accuracy and efficiency. The threshold 
limit is taken for HRU creation determines the minimum 
area required for a unique combination of land use, soil, and 
slope to be considered as a separate HRU. SWAT automati-
cally determines unique combination land use, soil and 
slope depending upon their classes. Smaller threshold results 
in finer spatial discretization, allowing for a more detailed 
representation of the landscape. Subdividing the watershed 
into areas having unique land use, soil and slope combina-
tions enables the model to reflect differences in ET for 
various crops and soils. In this study, 10% threshold land 
use/soil/slope area over sub-basin area was taken to 
delineate the HRUs. The inputs for SWAT model consist of 
climatic and soil parameters, topography, and land use and 
management practices (Neitsch et al., 2011; Padhiary et al., 
2019). The model is capable of simulating continuous 
hydrological events at daily, monthly and annual time steps 
(Arnold et al., 1998; Neitsch et al., 2011). SWAT can also 
simulate sediment yield, nutrients outflow and crop yield of 
a watershed (Neitsch et al., 2011; Panda et al., 2021a). It 
simulates runoff based on USDA Natural Resources 
Conservation Services-Curve Number (NRCS-CN) method. 
ET is estimated by three widely used methods such as FAO 
56 PM method (Monteith, 1965; Allen et al., 1998), HA 
method  and PT method 48 (Priestley and Taylor, 1972). 

The SWAT model is embedded with variable storage 
method or Muskingum method for flow routing, Green and 
Ampt infiltration method for infiltration rate, and kinetic 
reservoir routing method (Sloan et al.,1983) for lateral flow. 
Volume balance approach developed by Neitsch et al. 
(2011) has been used to estimate recharges to shallow and 
deep aquifers. The model is capable of simulating the 
groundwater level of the shallow aquifers in each HRU 
without any physical datum. Its limitation is it cannot 
simulate the flow of groundwater between the boundaries of 
two adjacent HRUs. Two different methods are set in the 
SWAT model for estimating the surface retention coeffi-
cient. In the first method, the surface retention coefficient 
depends on soil moisture content and in the second method 
it depends on the cumulative ET. The annual soil loss at 
HRU scale is estimated by SWAT model using the modified 
universal soil loss equation (Wischmeier and Smith, 1978). 
The water balance equation developed by Neitsch et al. 

Fig. 4. Soil map of the study area

Fig. 3. Land use map of the study area

(2011) for simulating soil water content at desired time step 
is given in (eq. 1): 

              ...(1)

Where, SM = soil moisture content at the end of the day t  

(mm), SM  = initial soil moisture content in the beginning of o

the day (mm), R  = depth of rainfall during the day (mm), Qs  i i

= quantity of surface runoff during the day (mm), ET =  a,

actual ET during the day (mm), S  = Quantity of water i

entering the vadose zone from the soil profile during the day 
(mm), Qg  = Quantity of return flow during the day (mm); i = i

index for the day under consideration; and t = time interval 
in days. 

Watershed Delineation 

The process of catchment delineation in SWAT model 
involves a systematic partitioning of larger basins into 
smaller, manageable units for more precise hydrological 
simulation and analysis. SWAT utilizes digital elevation 
model (DEM) to delineate watershed and sub-watersheds. 
The model identifies outlets within the basin, determines 
flow directions and flow accumulation to delineate watershed 
boundaries. Further, the sub-watersheds are divided in to 
HRUs considering uniform land use, soil and slope. In this 
study, the entire catchment is sub-divided into 15 sub-
watersheds and 1563 HRUs.

SWAT-CUP

A component model for the calibration, validation and 
sensitivity analysis of SWAT model output developed by 
Abbaspour et al. (2007) is named as SWAT-CUP. Parameter 
uncertainty analysis is also well taken by this model. Four 
calibration algorithms available in this model are ParaSol, 
SUFI-2, GLUE, and MCMC. Out of them SUFI-2 algorithm 
has been used in the present study for calibration of stream 
flow and analysis of sensitivity and uncertainty. The SUFI-2 
(Sequential Uncertainty Fitting) algorithm is widely used in 
the SWAT model for parameter calibration and uncertainty 
analysis due to its effectiveness in handling the complex, 
non-linear, and highly parameterized nature of the model. 
The popularity of SUFI-2 can be justified by its ability to 
efficiently explore the parameter space and provide reliable 
estimates of parameter values while accounting for parameter 
uncertainty (Moriasi et al., 2007; Vagheei et al., 2023). 

The level of significance between the datasets was 
estimated using t-test. The p-values have been used to test 
the significance of the sensitivity. The larger absolute value 
of t-test indicates a parameter to be more sensitive and 
similarly the lower p-values proximity to zero show more 
significance. The SUFI-2 algorithm accounts both for input 
and output parameter uncertainty. Uncertainty in input 
parameters is represented by uniform distribution of data 
and the uncertainty in output is computed at 95% prediction 

 

tion and validation. Details of land use pattern and soil types 
of the catchment are illustrated through Fig. 3 and Fig. 4, 
respectively. 

Land Use and Soil 

It is well-known that land use/land cover (LU/LC) and 
soil types have a significant impact on the hydrological 
cycle's runoff, infiltration, percolation and ET processes. 
For this study, a LU/LC map of 2014-15 at a scale of 
1:50000 was obtained from the National Remote Sensing 
Centre (NRSC), Hyderabad, India. The study area was 
divided into five major LU/LC, including water bodies, 
waste land, forest, built-up areas, and agricultural land, as 
shown in Fig. 2. Water bodies account for only 1.96% of the 
basin's area. Agricultural land, the dominant land use in the 
catchment, covers around 50.11% of the study area. The 
forested land occupies 37.52% of the catchment area and is 
mostly concentrated in the eastern, southeastern, and 
western regions, while the built-up areas (1.2%) and waste 
lands (9.21%) are scattered sporadically across the catch-
ment. Additionally, the soil texture map of the watershed 
was obtained from ICAR-NBSS&LUP, Kolkata, as shown 
in Fig. 3. The catchment's soil texture is divided into seven 
classes, namely clay, loam, clay loam, silty clay, sandy 
loam, silty clay loam, and sandy clay loam. Clay loam soil 
covers nearly half (49.9%) of the catchment area, followed 
by sandy loam soil, which covers 26.5% of the catchment.. 
Sandy clay loam and sandy clay soil types are spread over 
21.1% and 2.5% of the area, respectively. The physical 
properties of the soil types is presented in Table 2.
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Land use National Remote Sensing Centre (1:50000) (https://www.nrsc.gov.in/) (ISRO), Hyderabad 2014-15
Rainfall Recorded block-wise rainfall data from Special Relief Commissioner, Odisha (https://srcodisha.nic.in/) 2000-2018
Temperature 1º×1º gridded minimum and maximum temperature data from India Meteorological Department (IMD), Pune 2000-2018
Streamflow Daily discharge data (2000-2018) from Water Resources Information System of India (India-WRIS), CWC 2000-2018

(https://indiawris.gov.in/wris)
DEM Digital Elevation Model (DEM) from Shuttle Radar Topography Mission (SRTM 30) of USGS 2005

(http://srtm.csi.cgiar.org/) 

Table: 2
Soil physical properties 

Soil texture Soil bulk density Available water holding capacity Soil organic carbon Clay Silt Sand
-3(g cm ) (%v) (%)

Clay 1.32 16 0.51 45.7 32.3 22
Silty clay 1.27 15 0.49 42.3 47.6 10.1
Clay loam 1.4 14 0.48 33.9 28.1 38
Silty clay loam 1.34 16 0.47 32.3 49.5 18.2
Sandy clay loam 1.51 10 0.5 22.4 9.6 68
Loam 1.42 15 0.45 25.7 37.9 36.4
Sandy loam 1.49 10 0.2 17.8 20.2 62

SWAT Model

SWAT is a semi-distributed hydrological model. It was 
developed by the United States Department of Agriculture 
(USDA) - Agricultural Research Service (Arnold et al., 
1998). It divides a catchment into sub-watersheds and 
further to hydrological response units (HRUs). An HRU is 
the basic unit of hydrology having uniform land use, soil 
and slope (Arnold et al., 1998; Uniyal et al., 2015a, Das et 
al., 2022). The threshold limit for HRUs is an important 
consideration in SWAT modelling, and it has implications 
for deciding model accuracy and efficiency. The threshold 
limit is taken for HRU creation determines the minimum 
area required for a unique combination of land use, soil, and 
slope to be considered as a separate HRU. SWAT automati-
cally determines unique combination land use, soil and 
slope depending upon their classes. Smaller threshold results 
in finer spatial discretization, allowing for a more detailed 
representation of the landscape. Subdividing the watershed 
into areas having unique land use, soil and slope combina-
tions enables the model to reflect differences in ET for 
various crops and soils. In this study, 10% threshold land 
use/soil/slope area over sub-basin area was taken to 
delineate the HRUs. The inputs for SWAT model consist of 
climatic and soil parameters, topography, and land use and 
management practices (Neitsch et al., 2011; Padhiary et al., 
2019). The model is capable of simulating continuous 
hydrological events at daily, monthly and annual time steps 
(Arnold et al., 1998; Neitsch et al., 2011). SWAT can also 
simulate sediment yield, nutrients outflow and crop yield of 
a watershed (Neitsch et al., 2011; Panda et al., 2021a). It 
simulates runoff based on USDA Natural Resources 
Conservation Services-Curve Number (NRCS-CN) method. 
ET is estimated by three widely used methods such as FAO 
56 PM method (Monteith, 1965; Allen et al., 1998), HA 
method  and PT method 48 (Priestley and Taylor, 1972). 

The SWAT model is embedded with variable storage 
method or Muskingum method for flow routing, Green and 
Ampt infiltration method for infiltration rate, and kinetic 
reservoir routing method (Sloan et al.,1983) for lateral flow. 
Volume balance approach developed by Neitsch et al. 
(2011) has been used to estimate recharges to shallow and 
deep aquifers. The model is capable of simulating the 
groundwater level of the shallow aquifers in each HRU 
without any physical datum. Its limitation is it cannot 
simulate the flow of groundwater between the boundaries of 
two adjacent HRUs. Two different methods are set in the 
SWAT model for estimating the surface retention coeffi-
cient. In the first method, the surface retention coefficient 
depends on soil moisture content and in the second method 
it depends on the cumulative ET. The annual soil loss at 
HRU scale is estimated by SWAT model using the modified 
universal soil loss equation (Wischmeier and Smith, 1978). 
The water balance equation developed by Neitsch et al. 

Fig. 4. Soil map of the study area

Fig. 3. Land use map of the study area

(2011) for simulating soil water content at desired time step 
is given in (eq. 1): 

              ...(1)

Where, SM = soil moisture content at the end of the day t  

(mm), SM  = initial soil moisture content in the beginning of o

the day (mm), R  = depth of rainfall during the day (mm), Qs  i i

= quantity of surface runoff during the day (mm), ET =  a,

actual ET during the day (mm), S  = Quantity of water i

entering the vadose zone from the soil profile during the day 
(mm), Qg  = Quantity of return flow during the day (mm); i = i

index for the day under consideration; and t = time interval 
in days. 

Watershed Delineation 

The process of catchment delineation in SWAT model 
involves a systematic partitioning of larger basins into 
smaller, manageable units for more precise hydrological 
simulation and analysis. SWAT utilizes digital elevation 
model (DEM) to delineate watershed and sub-watersheds. 
The model identifies outlets within the basin, determines 
flow directions and flow accumulation to delineate watershed 
boundaries. Further, the sub-watersheds are divided in to 
HRUs considering uniform land use, soil and slope. In this 
study, the entire catchment is sub-divided into 15 sub-
watersheds and 1563 HRUs.

SWAT-CUP

A component model for the calibration, validation and 
sensitivity analysis of SWAT model output developed by 
Abbaspour et al. (2007) is named as SWAT-CUP. Parameter 
uncertainty analysis is also well taken by this model. Four 
calibration algorithms available in this model are ParaSol, 
SUFI-2, GLUE, and MCMC. Out of them SUFI-2 algorithm 
has been used in the present study for calibration of stream 
flow and analysis of sensitivity and uncertainty. The SUFI-2 
(Sequential Uncertainty Fitting) algorithm is widely used in 
the SWAT model for parameter calibration and uncertainty 
analysis due to its effectiveness in handling the complex, 
non-linear, and highly parameterized nature of the model. 
The popularity of SUFI-2 can be justified by its ability to 
efficiently explore the parameter space and provide reliable 
estimates of parameter values while accounting for parameter 
uncertainty (Moriasi et al., 2007; Vagheei et al., 2023). 

The level of significance between the datasets was 
estimated using t-test. The p-values have been used to test 
the significance of the sensitivity. The larger absolute value 
of t-test indicates a parameter to be more sensitive and 
similarly the lower p-values proximity to zero show more 
significance. The SUFI-2 algorithm accounts both for input 
and output parameter uncertainty. Uncertainty in input 
parameters is represented by uniform distribution of data 
and the uncertainty in output is computed at 95% prediction 

 

tion and validation. Details of land use pattern and soil types 
of the catchment are illustrated through Fig. 3 and Fig. 4, 
respectively. 

Land Use and Soil 

It is well-known that land use/land cover (LU/LC) and 
soil types have a significant impact on the hydrological 
cycle's runoff, infiltration, percolation and ET processes. 
For this study, a LU/LC map of 2014-15 at a scale of 
1:50000 was obtained from the National Remote Sensing 
Centre (NRSC), Hyderabad, India. The study area was 
divided into five major LU/LC, including water bodies, 
waste land, forest, built-up areas, and agricultural land, as 
shown in Fig. 2. Water bodies account for only 1.96% of the 
basin's area. Agricultural land, the dominant land use in the 
catchment, covers around 50.11% of the study area. The 
forested land occupies 37.52% of the catchment area and is 
mostly concentrated in the eastern, southeastern, and 
western regions, while the built-up areas (1.2%) and waste 
lands (9.21%) are scattered sporadically across the catch-
ment. Additionally, the soil texture map of the watershed 
was obtained from ICAR-NBSS&LUP, Kolkata, as shown 
in Fig. 3. The catchment's soil texture is divided into seven 
classes, namely clay, loam, clay loam, silty clay, sandy 
loam, silty clay loam, and sandy clay loam. Clay loam soil 
covers nearly half (49.9%) of the catchment area, followed 
by sandy loam soil, which covers 26.5% of the catchment.. 
Sandy clay loam and sandy clay soil types are spread over 
21.1% and 2.5% of the area, respectively. The physical 
properties of the soil types is presented in Table 2.
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thWhere, O = observed data on i  time period; S = i i 

thpredicted / simulated value of i  time period; Ō  mean of 
observed data; S = mean of simulated data, and n = total 
number of simulation period.

The P-factor and the R-factor were used to quantify the 
model parameter uncertainties associated with SWAT simula-
tion. The P-factor represents the percentage of observed 
data bracketed within the 95% prediction uncertainty band 
(95PPU) of the simulation results. It ranges from 0 to 1. The 
R-factor represents as the ratio between average width of the 
95PPU band and the standard deviation of the observed 

variable and varies from 0 to ∞ (Abbaspour et al., 2007; 

Zhao et al., 2018; Panda et al., 2021a). Larger values of both 
factors represent better simulation under parameter 
uncertainty. Mathematical expressions for P-factor and R-
factor are given in eq. 10 and 11, respectively (Abbaspour et 
al., 2007; Uniyal et al., 2015b).

...(10)

Where, ny  = number of observed values bracketed by ti

95PPU, and n = total number of observed values.

...(11)

Where,            is the lower boundary and             is the 
upper boundary of the 95 Uncertainty Band (UB) and σ  is obs

the standard deviation of the observed data. 

Model Simulation 

In the present study, hydrological simulation of Kantamal 
catchment under Mahanadi river basin has been made using 
the three embedded ET simulation methods i.e., HA, PM 
and PT method. Calibration and validation of the model 
using HA method was carried out with the observed 

=

accomplished using the observed and simulated monthly 
streamflow data at Kantamal outlet of the catchment. 
Nineteen years of streamflow data (2001-2018) were used 
for the simulation. First 3 years data were used for warming 
up operation of the model. Streamflow records from 2004 to 
2012 were used for model calibration. The remaining 6 
years data from 2013 to 2018 were used for model valida-
tion. The output of SWAT model was used as input to SWAT-
CUP for calibration, sensitivity analysis, uncertainty assess-
ment and validation. The objective of the model calibration 
is to identify the optimal values of the model parameters for 
best simulation. Global sensitivity analysis was performed 
to identify the most sensitive parameters. Fifteen different 
parameters were selected for model calibration, sensitivity 
and uncertainty analysis as presented in Table 3.

Performance indicators

Model performance under different simulation 
scenarios were evaluated using statistical indicators like 
nash-sutcliffe efficiency (NSE), percentage bias (PBIAS), 
root mean square error (RMSE), coefficient of determina-

2tion (R ), and P- and R-factor. These indicators are expressed 
mathematically through eqs. 6, 7, 8 and 9.

...(6)

...(7)

...(8)

...(9)

uncertainty (95PPU). Latin hypercube sampling method 
calculated at 2.5% and 97.5% prediction limit was used for 
obtaining the cumulative distribution of the output parame-
ter (Abbaspour et al., 2007). Further, the P-factor and R-
factor were used to evaluate the strength of calibration and 
uncertainty (Khoi and Thom, 2015; Abbaspour et al., 2015; 
Kumarsamy and Belmont, 2018, Das et al., 2022, Zhang et 
al., 2023).  

Evapotranspiration (ET) Methods 

ET includes evaporation from the water bodies and soil, 
and transpiration from the vegetative cover. Thornthwaite 
(1948) first coined the term PET as a part of climatic 
classification. Out of several methods developed for 
estimating PET, three methods namely, HA method, PT 
method and PM method are embedded in SWAT model. 
Modellers can choose any of these methods based on 
availability of climatic input data (Aouissi et al., 2016). In 
many developing countries like India, availability of 
observed climate data is very scarce at watershed scale. 
Therefore, gridded climate data derived from the recorded 
data of climatic stations are mostly used in hydrological 
modelling with acceptable accuracy. In India, IMD 
developed 0.25º×0.25º gridded data of rainfall and 1º×1º 
degree gridded data of maximum and minimum tempera-
ture have been considered as the finest resolution climatic 
data, which is freely available in daily time step. 

However, other climatic variables are not abundantly 
available for regional studies (Panda et al., 2021a, Gholami 
et al., 2023). For such situation, the process based hydrolog-
ical models like SWAT are capable of using an average 
simulated climatic data to run the model. Maximum and 
minimum temperature, relative humidity, wind speed and 
solar radiation are the required climatic data for ET 
estimation by PM method embedded in SWAT. In data 
scarce areas, these climatic variables can be simulated from 
1º×1º gridded climate data developed by IMD for the entire 
country and freely available in the official website of SWAT 
model. Likewise, there is an inbuilt weather generator 
(WGEN) model in SWAT to generate an approximate 
climatic data for the entire world, which is used to fill-up the 
missing values of observed climatic data (Sharpley and 
Williams, 1990; Aouissi et al., 2016). 

Hargreaves (HA) Method

The HA method was originally developed in Davis, 
California from eight years of research using lysimeter. It 
estimates PET using minimum climatic data like maximum 
and minimum temperatures. The original equation went 
through several modifications before it was used in SWAT 
(Hargreaves and Samani, 1985). The modified Hargreaves 
equation is shown in eq. 2:

              ...(2)

-1Where, λ = latent heat of vaporization (MJ kg ), E = 0 

-1 -2 -1PET (mm d ), H = extra-terrestrial radiation (MJ m d ), 0 

T = maximum ambient temperature for the day under max

◦consideration ( C), T = minimum ambient temperature for min

oday under consideration ( C), T = minimum ambient tempera-min 

oture for day under consideration ( C), and T  = mean air av

otemperature for the given day ( C).

Penman-Monteith (PM) method

The PM equation (eq. 3) combines mechanisms that 
accounts for the energy required for evaporation. It takes 
into account the removal of water vapour, soil heat flux, 
aerodynamic resistance and canopy resistance using 
physically based mathematical formulations (Monteith 
1965; Arnold et al., 1998).

              ...(3)

-2 -1Where, λ = latent heat flux density (MJ m d ); E = rate 
-1 -1 2of evaporation day  (mm d ); H = net radiation (MJ/m /d); net

Δ = slope of the saturation vapour pressure-temperature 
o -1 -curve, de/dT (kPa C ); G = ground heat flux density (MJ m

2 -1 -1 o -1d ); Cp = specific heat at constant pressure (MJ kg C ); 
-3 0ρ = air density (kg m ); e = saturation vapour pressure of air z

air at height z (kPa); e = actual vapour pressure of air at z

-1height z (kPa); r  = aerodynamic resistance (s m ); γ = a

o -1psychrometric constant (kPa C ); and r = plant canopy c 

-1resistance (s m ).

The PM equation for adequately watered plants under 
normal atmospheric conditions and assumed logarithmic 
wind profiles can be written as eq. 4:

              ...(4)
-1Where, λ = latent heat of vaporization (MJ kg ), ET = 

-1maximum transpiration rate (mm d ), K = a dimensionless 1

coefficient to ensure uniformity in units of the two terms in 
the numerator, and P = atmospheric pressure (kPa).

Priestly-Taylor (PT) method

Priestley and Taylor (1972) developed a simplified 
equation (eq. 5) for estimating evaporation from wet surface 
by removing the aerodynamic factor and the energy factor 
was multiplied by a coefficient, α , whose value is 1.28, pet

when the surrounding is wet or humid. This method is 
suitable for humid climatic condition but it underestimates 
PET in arid and semi-arid regions.

              ...(5)

Calibration and Validation

SWAT model calibration and validation has been 

Table: 3
Calibration parameters used in SUFI-2

S.No. Parameter Description

   1 R_CN2.mgt SCS runoff curve number
   2 V_ALPHA_BF.gw Base flow alpha factor (days)
   3 V_GW_DELAY.gw Groundwater delay (days)
   4 V_GWQMN.gw Threshold depth of water in the shallow aquifer required for return flow to occur (mm)
   5 V_OV_N.hru Manning's "n" value for overland flow
   6 V_LAT_TIME.hru Lateral flow travel time
   7 V_ESCO.hru Soil evaporation compensation factor
   8 V_EPCO.hru Plant uptake compensation factor
   9 V_SURLAG.hru Surface runoff lag coefficient (day)
 10 V_CANMX.hru Maximum canopy storage
 11 V_RCHRG_DP.gw Deep aquifer percolation fraction

-1 12 R_SOL_K (1).sol Saturated hydraulic conductivity (mm hr )
-1 13 R_SOL_AWC(1).sol Available water capacity of the soil layer r (mm mm )

 14 R_CH_N2.rte Manning's "n" value for the main channel
-1 15 R_CH_K2.rte Effective hydraulic conductivity in main channel alluvium (mm hr )
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thWhere, O = observed data on i  time period; S = i i 

thpredicted / simulated value of i  time period; Ō  mean of 
observed data; S = mean of simulated data, and n = total 
number of simulation period.

The P-factor and the R-factor were used to quantify the 
model parameter uncertainties associated with SWAT simula-
tion. The P-factor represents the percentage of observed 
data bracketed within the 95% prediction uncertainty band 
(95PPU) of the simulation results. It ranges from 0 to 1. The 
R-factor represents as the ratio between average width of the 
95PPU band and the standard deviation of the observed 

variable and varies from 0 to ∞ (Abbaspour et al., 2007; 

Zhao et al., 2018; Panda et al., 2021a). Larger values of both 
factors represent better simulation under parameter 
uncertainty. Mathematical expressions for P-factor and R-
factor are given in eq. 10 and 11, respectively (Abbaspour et 
al., 2007; Uniyal et al., 2015b).

...(10)

Where, ny  = number of observed values bracketed by ti

95PPU, and n = total number of observed values.

...(11)

Where,            is the lower boundary and             is the 
upper boundary of the 95 Uncertainty Band (UB) and σ  is obs

the standard deviation of the observed data. 

Model Simulation 

In the present study, hydrological simulation of Kantamal 
catchment under Mahanadi river basin has been made using 
the three embedded ET simulation methods i.e., HA, PM 
and PT method. Calibration and validation of the model 
using HA method was carried out with the observed 

=

accomplished using the observed and simulated monthly 
streamflow data at Kantamal outlet of the catchment. 
Nineteen years of streamflow data (2001-2018) were used 
for the simulation. First 3 years data were used for warming 
up operation of the model. Streamflow records from 2004 to 
2012 were used for model calibration. The remaining 6 
years data from 2013 to 2018 were used for model valida-
tion. The output of SWAT model was used as input to SWAT-
CUP for calibration, sensitivity analysis, uncertainty assess-
ment and validation. The objective of the model calibration 
is to identify the optimal values of the model parameters for 
best simulation. Global sensitivity analysis was performed 
to identify the most sensitive parameters. Fifteen different 
parameters were selected for model calibration, sensitivity 
and uncertainty analysis as presented in Table 3.

Performance indicators

Model performance under different simulation 
scenarios were evaluated using statistical indicators like 
nash-sutcliffe efficiency (NSE), percentage bias (PBIAS), 
root mean square error (RMSE), coefficient of determina-

2tion (R ), and P- and R-factor. These indicators are expressed 
mathematically through eqs. 6, 7, 8 and 9.

...(6)

...(7)

...(8)

...(9)

uncertainty (95PPU). Latin hypercube sampling method 
calculated at 2.5% and 97.5% prediction limit was used for 
obtaining the cumulative distribution of the output parame-
ter (Abbaspour et al., 2007). Further, the P-factor and R-
factor were used to evaluate the strength of calibration and 
uncertainty (Khoi and Thom, 2015; Abbaspour et al., 2015; 
Kumarsamy and Belmont, 2018, Das et al., 2022, Zhang et 
al., 2023).  

Evapotranspiration (ET) Methods 

ET includes evaporation from the water bodies and soil, 
and transpiration from the vegetative cover. Thornthwaite 
(1948) first coined the term PET as a part of climatic 
classification. Out of several methods developed for 
estimating PET, three methods namely, HA method, PT 
method and PM method are embedded in SWAT model. 
Modellers can choose any of these methods based on 
availability of climatic input data (Aouissi et al., 2016). In 
many developing countries like India, availability of 
observed climate data is very scarce at watershed scale. 
Therefore, gridded climate data derived from the recorded 
data of climatic stations are mostly used in hydrological 
modelling with acceptable accuracy. In India, IMD 
developed 0.25º×0.25º gridded data of rainfall and 1º×1º 
degree gridded data of maximum and minimum tempera-
ture have been considered as the finest resolution climatic 
data, which is freely available in daily time step. 

However, other climatic variables are not abundantly 
available for regional studies (Panda et al., 2021a, Gholami 
et al., 2023). For such situation, the process based hydrolog-
ical models like SWAT are capable of using an average 
simulated climatic data to run the model. Maximum and 
minimum temperature, relative humidity, wind speed and 
solar radiation are the required climatic data for ET 
estimation by PM method embedded in SWAT. In data 
scarce areas, these climatic variables can be simulated from 
1º×1º gridded climate data developed by IMD for the entire 
country and freely available in the official website of SWAT 
model. Likewise, there is an inbuilt weather generator 
(WGEN) model in SWAT to generate an approximate 
climatic data for the entire world, which is used to fill-up the 
missing values of observed climatic data (Sharpley and 
Williams, 1990; Aouissi et al., 2016). 

Hargreaves (HA) Method

The HA method was originally developed in Davis, 
California from eight years of research using lysimeter. It 
estimates PET using minimum climatic data like maximum 
and minimum temperatures. The original equation went 
through several modifications before it was used in SWAT 
(Hargreaves and Samani, 1985). The modified Hargreaves 
equation is shown in eq. 2:

              ...(2)

-1Where, λ = latent heat of vaporization (MJ kg ), E = 0 

-1 -2 -1PET (mm d ), H = extra-terrestrial radiation (MJ m d ), 0 

T = maximum ambient temperature for the day under max

◦consideration ( C), T = minimum ambient temperature for min

oday under consideration ( C), T = minimum ambient tempera-min 

oture for day under consideration ( C), and T  = mean air av

otemperature for the given day ( C).

Penman-Monteith (PM) method

The PM equation (eq. 3) combines mechanisms that 
accounts for the energy required for evaporation. It takes 
into account the removal of water vapour, soil heat flux, 
aerodynamic resistance and canopy resistance using 
physically based mathematical formulations (Monteith 
1965; Arnold et al., 1998).

              ...(3)

-2 -1Where, λ = latent heat flux density (MJ m d ); E = rate 
-1 -1 2of evaporation day  (mm d ); H = net radiation (MJ/m /d); net

Δ = slope of the saturation vapour pressure-temperature 
o -1 -curve, de/dT (kPa C ); G = ground heat flux density (MJ m

2 -1 -1 o -1d ); Cp = specific heat at constant pressure (MJ kg C ); 
-3 0ρ = air density (kg m ); e = saturation vapour pressure of air z

air at height z (kPa); e = actual vapour pressure of air at z

-1height z (kPa); r  = aerodynamic resistance (s m ); γ = a

o -1psychrometric constant (kPa C ); and r = plant canopy c 

-1resistance (s m ).

The PM equation for adequately watered plants under 
normal atmospheric conditions and assumed logarithmic 
wind profiles can be written as eq. 4:

              ...(4)
-1Where, λ = latent heat of vaporization (MJ kg ), ET = 

-1maximum transpiration rate (mm d ), K = a dimensionless 1

coefficient to ensure uniformity in units of the two terms in 
the numerator, and P = atmospheric pressure (kPa).

Priestly-Taylor (PT) method

Priestley and Taylor (1972) developed a simplified 
equation (eq. 5) for estimating evaporation from wet surface 
by removing the aerodynamic factor and the energy factor 
was multiplied by a coefficient, α , whose value is 1.28, pet

when the surrounding is wet or humid. This method is 
suitable for humid climatic condition but it underestimates 
PET in arid and semi-arid regions.

              ...(5)

Calibration and Validation

SWAT model calibration and validation has been 

Table: 3
Calibration parameters used in SUFI-2

S.No. Parameter Description

   1 R_CN2.mgt SCS runoff curve number
   2 V_ALPHA_BF.gw Base flow alpha factor (days)
   3 V_GW_DELAY.gw Groundwater delay (days)
   4 V_GWQMN.gw Threshold depth of water in the shallow aquifer required for return flow to occur (mm)
   5 V_OV_N.hru Manning's "n" value for overland flow
   6 V_LAT_TIME.hru Lateral flow travel time
   7 V_ESCO.hru Soil evaporation compensation factor
   8 V_EPCO.hru Plant uptake compensation factor
   9 V_SURLAG.hru Surface runoff lag coefficient (day)
 10 V_CANMX.hru Maximum canopy storage
 11 V_RCHRG_DP.gw Deep aquifer percolation fraction

-1 12 R_SOL_K (1).sol Saturated hydraulic conductivity (mm hr )
-1 13 R_SOL_AWC(1).sol Available water capacity of the soil layer r (mm mm )

 14 R_CH_N2.rte Manning's "n" value for the main channel
-1 15 R_CH_K2.rte Effective hydraulic conductivity in main channel alluvium (mm hr )
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Fig. 9. Comparison of monthly observed and simulated stream-
flow using HA, PM and PT methods during validation 
period

Fig. 8. Comparison of monthly observed and simulated stream -
flow using HA, PM and PT methods during calibration 
period

Fig. 7. Time series plot of simulated vs observed streamflow 
with 95PPU band during validation period

Fig. 6. Time series plot of simulated vs observed streamflow 
with 95PPU band during calibration period

streamflow records at Kantamal gauging station. Streamflow 
calibration parameters were then used for model prediction 
using PM and PT methods. The aim was to screen out the 
most suitable ET estimation method in SWAT model for 
water balance and estimation of stream flow precisely for 
eastern Indian climatic conditions using various statistical 

2and parameter uncertainty indicators like NSE, R , PBIAS, 
RMSE, P-factor and R-factor. Spatio-temporal variation of 
PET under different methods was also studied to check its 
applicability for agricultural water management in different 
sub watersheds and seasons of the year. The workflow 
diagram of methodological procedure is shown Fig. 4.

3.  RESULTS AND DISCUSSION

In evaluating the ET estimation methods with respect to 
their effect on streamflow simulation using SWAT, the 
initial model calibration, parameterization, and uncertainty 
analysis were carried using HA method only. Recorded data 
of minimum and maximum temperature collected from the 
catchment were used for estimation of evapotranspiration. 
The optimal value of the calibrated parameters were used in 
SWAT for simulating streamflow with PM and PT methods.  
The main purpose of fixing the calibration parameters is to 
study the effect of change in PET method on catchment 
water balance. 

Sensitivity Analysis  

Identification of sensitive parameters and their optimal 
values bears a paramount importance in semi-distributed 
hydrological models. It involves the ranking of individual 
input parameters with respect to their influence on the 
model output. In the present study, SWAT-CUP model with 
SUFI-2 algorithm was used for auto calibration, parameter 
sensitivity and uncertainty analysis. A total number of 15 
SWAT parameters, presented in Table 3, were selected for 
this purpose based on previous studies and literature 

generates a band of stream flow output (95PPU) taking into 
account 2.5% and 97.5% levels of the cumulative simulated 
stream flow generated by changing model parameters 
within the range using Latin hypercube sampling technique. 
The model takes care of uncertainties from various sources 
when most of the observed stream flow data are bracketed 
within the 95PPU band (Padhiary et al., 2019). Uncertainty 
in stream flow simulation is also measured by P-factor and 
R-factor. 

The model simulation results with 95PPU band plotted 
against the observed stream flow data for model calibration 
and validation periods are portrayed through Fig’s. 6 and 7, 
respectively using Hargreaves ET model. It is observed that 
most of the measured streamflow data are well bracketed 
within the 95PPU band, which indicates that the model 
simulation takes care of uncertainty that arises from various 
sources of hydrological modelling. However, some irregulari-
ties are also observed during the peak flow simulation in the 
year 2006 and 2008 during the calibration period and in the 
year 2016 and 2018 during validation period when the 
observed peak flows are slightly exceeding the 95PPU 
band. This infers the weakness of the SWAT model while 
predicting the peak flow. Various researchers claim that the 
curve number method used in SWAT model for simulating 
direct runoff under-estimates the peak flow (Uniyal et al., 
2015a; Padhiary et al., 2019; Panda et al., 2021a). The 
values of P-factor and R- factor were found to be 0.77 and 
0.46 during model calibration, and 0.79 and 0.47 during the 

validation period, respectively. The values of P-factor and 
the R-factor are very much within the desired range. Thus, it 
may be inferred that the overall performance of the model 
with respect to parameter uncertainty is satisfactory. 

Streamflow Simulation using Alternative PET Estimation 
Methods 

Streamflow of Kantamal catchment was simulated 
under three scenarios by changing the PET estimation 
methods. The HA, PM and PT methods were used under 
scenario-I, scenario-II and scenario-III, respectively. Simulated 
streamflow under the three scenarios were compared with 
the observed streamflow data at Kantamal outlet. The results 
are presented in Fig’s. 8 and 9 for calibration and validation 
periods, respectively. They depict a better match between 
the model simulated streamflow under three scenarios with 
the observed data during the high and low flow periods with 
minimum irregularities. As stated before, the model simula-
tion is under-predicting streamflow in the year 2006, 2008, 
2016 and 2018 under all scenarios. It implies that variation 
in PET estimation methods has no significant effect on peak 
flow simulation rather it may be due to the limitation of 
model formulation to simulate the peak flows. It may be 
inferred that in low flow situations during non-monsoon 
periods, the model is slightly over-estimating the streamflow 
and PET selection methods have negligible influence on 
controlling the high and low flow simulation in SWAT.

(Winchell et al., 2010; Padhiary et al., 2019; Panda et al., 
2021a). The SWAT-CUP is embedded with the module of 
global sensitivity analysis in which all the input parameters 
change simultaneously and the sensitivity is evaluated over 
the entire range of input parameters. 

Sensitivity analysis was executed by 1000 runs of 
SWAT-CUP model. The results are depicted in Table 4. The 
indicators like t-stat and p-value were used for quantifica-
tion of the sensitivity and assessing the relative importance 
of each parameter (Abbaspour et al., 2015). The highest 
absolute value of t-stat and lowest p-value represents the 
most sensitive parameter. In the present study, SCS-CN 
value for AMC II (CN ) has been identified as the most 2

sensitive parameter followed by baseflow parameters like 
ALPHA_BF, GW_DELAY and GWQMN, respectively 
(Uniyal et al., 2015a; Padhiary et al., 2019). Streamflow 
from the Kantamal catchment is found to be dependent 
mostly on curve number, which is governed by surface 
properties like LULC, soil and land management practices. 
As the catchment covers a large part of the Mahanadi river 
basin, the baseflow contribution to streamflow is also 
dominant and sensitive next to the surface runoff.

Model calibration, validation and uncertainty analysis

SWAT model was calibrated using the observed 
streamflow data from 2004 to 2012 with 3 years of warm-up 
period and validated from 2013 to 2018 as portrayed 
through Fig’s. 5 and 6. Uncertainty analysis was conducted 
during the process of calibration. A close relationship was 
witnessed between model calibration and uncertainty analysis. 
Without uncertainty analysis, calibration is meaningless 
because it takes care of errors associated with model input 
data, parameters, conceptualization, structure, mathemati-
cal formulation and measured data (Uniyal et al., 2015a; 
Padhiary et al., 2019). The SUFI-2 algorithm in SWAT-CUP 
is provided with stochastic calibration technique. It 

Table: 4
Minimum, maximum and fitted value of calibration parameters by SUFI-2

Sensitivity rank Parameter Minimum Maximum Fitted value t-stat p-value

           1 R_CN2.mgt -0.20 0.20 -0.10 3.62 0
           2 V_ALPHA_BF.gw 0.00 1.00 0.37 3.50 0
           3 V_GW_DELAY.gw 0.00 500.00 242.00 2.32 0.12
           4 V_GWQMN.gw 0.00 5000.00 0.51 -2.05 0.15
           5 V_OV_N.hru 0.01 30.00 20.85 ?1.57 0.18
           6 V_LAT_TIME.hru 0.00 180.00 118.63 1.47 0.21
           7 V_ESCO.hru 0.00 1.00 0.13 1.36 0.25
           8 V_EPCO.hru 0.00 1.00 0.22 -1.11 0.31
           9 V_SURLAG.hru 0.05 24.00 12.13 -0.69 0.42
          10 V_CANMX.hru 1.00 100.00 93.18 ?0.53 0.52
          11 V_RCHRG_DP.gw 0.00 1.00 0.57 ?0.47 0.59
          12 R_SOL_K (1).sol 0.00 2000.00 899.96 0.35 0.62
          13 R_SOL_AWC(1).sol 0.23 1.06 0.35 0.18 0.75
          14 R_CH_N2.rte 0.11 0.45 0.27 0.02 0.98
          15 R_CH_K2.rte 0.01 500.00 124.26 0.01 0.855
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Fig. 9. Comparison of monthly observed and simulated stream-
flow using HA, PM and PT methods during validation 
period

Fig. 8. Comparison of monthly observed and simulated stream -
flow using HA, PM and PT methods during calibration 
period

Fig. 7. Time series plot of simulated vs observed streamflow 
with 95PPU band during validation period

Fig. 6. Time series plot of simulated vs observed streamflow 
with 95PPU band during calibration period

streamflow records at Kantamal gauging station. Streamflow 
calibration parameters were then used for model prediction 
using PM and PT methods. The aim was to screen out the 
most suitable ET estimation method in SWAT model for 
water balance and estimation of stream flow precisely for 
eastern Indian climatic conditions using various statistical 

2and parameter uncertainty indicators like NSE, R , PBIAS, 
RMSE, P-factor and R-factor. Spatio-temporal variation of 
PET under different methods was also studied to check its 
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diagram of methodological procedure is shown Fig. 4.

3.  RESULTS AND DISCUSSION
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input parameters with respect to their influence on the 
model output. In the present study, SWAT-CUP model with 
SUFI-2 algorithm was used for auto calibration, parameter 
sensitivity and uncertainty analysis. A total number of 15 
SWAT parameters, presented in Table 3, were selected for 
this purpose based on previous studies and literature 

generates a band of stream flow output (95PPU) taking into 
account 2.5% and 97.5% levels of the cumulative simulated 
stream flow generated by changing model parameters 
within the range using Latin hypercube sampling technique. 
The model takes care of uncertainties from various sources 
when most of the observed stream flow data are bracketed 
within the 95PPU band (Padhiary et al., 2019). Uncertainty 
in stream flow simulation is also measured by P-factor and 
R-factor. 

The model simulation results with 95PPU band plotted 
against the observed stream flow data for model calibration 
and validation periods are portrayed through Fig’s. 6 and 7, 
respectively using Hargreaves ET model. It is observed that 
most of the measured streamflow data are well bracketed 
within the 95PPU band, which indicates that the model 
simulation takes care of uncertainty that arises from various 
sources of hydrological modelling. However, some irregulari-
ties are also observed during the peak flow simulation in the 
year 2006 and 2008 during the calibration period and in the 
year 2016 and 2018 during validation period when the 
observed peak flows are slightly exceeding the 95PPU 
band. This infers the weakness of the SWAT model while 
predicting the peak flow. Various researchers claim that the 
curve number method used in SWAT model for simulating 
direct runoff under-estimates the peak flow (Uniyal et al., 
2015a; Padhiary et al., 2019; Panda et al., 2021a). The 
values of P-factor and R- factor were found to be 0.77 and 
0.46 during model calibration, and 0.79 and 0.47 during the 

validation period, respectively. The values of P-factor and 
the R-factor are very much within the desired range. Thus, it 
may be inferred that the overall performance of the model 
with respect to parameter uncertainty is satisfactory. 

Streamflow Simulation using Alternative PET Estimation 
Methods 

Streamflow of Kantamal catchment was simulated 
under three scenarios by changing the PET estimation 
methods. The HA, PM and PT methods were used under 
scenario-I, scenario-II and scenario-III, respectively. Simulated 
streamflow under the three scenarios were compared with 
the observed streamflow data at Kantamal outlet. The results 
are presented in Fig’s. 8 and 9 for calibration and validation 
periods, respectively. They depict a better match between 
the model simulated streamflow under three scenarios with 
the observed data during the high and low flow periods with 
minimum irregularities. As stated before, the model simula-
tion is under-predicting streamflow in the year 2006, 2008, 
2016 and 2018 under all scenarios. It implies that variation 
in PET estimation methods has no significant effect on peak 
flow simulation rather it may be due to the limitation of 
model formulation to simulate the peak flows. It may be 
inferred that in low flow situations during non-monsoon 
periods, the model is slightly over-estimating the streamflow 
and PET selection methods have negligible influence on 
controlling the high and low flow simulation in SWAT.

(Winchell et al., 2010; Padhiary et al., 2019; Panda et al., 
2021a). The SWAT-CUP is embedded with the module of 
global sensitivity analysis in which all the input parameters 
change simultaneously and the sensitivity is evaluated over 
the entire range of input parameters. 

Sensitivity analysis was executed by 1000 runs of 
SWAT-CUP model. The results are depicted in Table 4. The 
indicators like t-stat and p-value were used for quantifica-
tion of the sensitivity and assessing the relative importance 
of each parameter (Abbaspour et al., 2015). The highest 
absolute value of t-stat and lowest p-value represents the 
most sensitive parameter. In the present study, SCS-CN 
value for AMC II (CN ) has been identified as the most 2

sensitive parameter followed by baseflow parameters like 
ALPHA_BF, GW_DELAY and GWQMN, respectively 
(Uniyal et al., 2015a; Padhiary et al., 2019). Streamflow 
from the Kantamal catchment is found to be dependent 
mostly on curve number, which is governed by surface 
properties like LULC, soil and land management practices. 
As the catchment covers a large part of the Mahanadi river 
basin, the baseflow contribution to streamflow is also 
dominant and sensitive next to the surface runoff.

Model calibration, validation and uncertainty analysis

SWAT model was calibrated using the observed 
streamflow data from 2004 to 2012 with 3 years of warm-up 
period and validated from 2013 to 2018 as portrayed 
through Fig’s. 5 and 6. Uncertainty analysis was conducted 
during the process of calibration. A close relationship was 
witnessed between model calibration and uncertainty analysis. 
Without uncertainty analysis, calibration is meaningless 
because it takes care of errors associated with model input 
data, parameters, conceptualization, structure, mathemati-
cal formulation and measured data (Uniyal et al., 2015a; 
Padhiary et al., 2019). The SUFI-2 algorithm in SWAT-CUP 
is provided with stochastic calibration technique. It 

Table: 4
Minimum, maximum and fitted value of calibration parameters by SUFI-2

Sensitivity rank Parameter Minimum Maximum Fitted value t-stat p-value

           1 R_CN2.mgt -0.20 0.20 -0.10 3.62 0
           2 V_ALPHA_BF.gw 0.00 1.00 0.37 3.50 0
           3 V_GW_DELAY.gw 0.00 500.00 242.00 2.32 0.12
           4 V_GWQMN.gw 0.00 5000.00 0.51 -2.05 0.15
           5 V_OV_N.hru 0.01 30.00 20.85 ?1.57 0.18
           6 V_LAT_TIME.hru 0.00 180.00 118.63 1.47 0.21
           7 V_ESCO.hru 0.00 1.00 0.13 1.36 0.25
           8 V_EPCO.hru 0.00 1.00 0.22 -1.11 0.31
           9 V_SURLAG.hru 0.05 24.00 12.13 -0.69 0.42
          10 V_CANMX.hru 1.00 100.00 93.18 ?0.53 0.52
          11 V_RCHRG_DP.gw 0.00 1.00 0.57 ?0.47 0.59
          12 R_SOL_K (1).sol 0.00 2000.00 899.96 0.35 0.62
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distinct spatial variation in PET under the three methods, 
therefore, optimal care must be taken while using SWAT 
model for ET based irrigation planning and crop water 
management. Validation of ET is therefore recommended 
for such regional studies to screen out the most suitable PET 
method. However, non-availability of observed time series 
ET data is a great constraint in such studies for developing 
countries like India. 

Temporal Distribution of PET

The temporal distribution of monthly PET under the 
three methods is illustrated in Fig. 11. It is observed that PM 
method predicts the highest monthly PET than other two 
methods over the years. The HA method shows medium 
level of PET, lower than the PM method, and PT method 
predicts the lowest PET among the three methods. Monthly 
cumulative PET increases in summer months i.e., from 
March to June. The same pattern is observed in HA and PM 
methods, while PT method does not follow the temporal 
pattern of ET in the region. Therefore, PT method is not 
suitable for PET estimation or ET based crop planning in the 
study area as well as in other areas having similar climatic 
conditions.

4. CONCLUSIONS

Stream flow of Kantamal catchment has been simu-
lated at monthly time step using three PET estimation 
methods. In HA method, the maximal and minimal 
temperatures obtained from IMD gridded data were used 
whereas, in other two methods the maxima land minimal 
temperature data in addition to other simulated climatic data 
from an average climate data base of IMD were used. 

2Statistical indices like R , NSE values were found to be the 
highest and PBIAS, RMSE were the lowest in case of HA 
method. The results depict that temperature based HA 
method is most effective for streamflow modeling at par 
with the physically based PM method using simulated 
climatic data of wind speed, relative humidity and solar 
radiation.  However, the model performance using PT 
method is little inferior to other two methods. The values of 
P- and R-factors were found to be 0.77 and 0.46 during 
calibration period and 0.79 and 0.47 during validation 
period, respectively. The HA method is adjudged as the best 
PET method as it predicts streamflow more accurately than 
the other two methods. There is a very negligible difference 
in streamflow simulation using HA and PM methods and so, 
it may be concluded that either of the two methods may be 
used depending upon the data availability. There is signifi-
cant variation in spatio-temporal behavior of PET under the 
three methods. Therefore, it is emphasized to undertake 

Water Balance 

Annual water balance simulation of Kantamal 
catchment has been figured using the check tool of the 
SWAT model as shown in Table 5. It depicts the highest 
annual PET (1914.5 mm) under PM method followed by 
HA (1809.0 mm) and PT (1441.8 mm) method. The PET is 
over-estimated in PM method and under-estimated in PT 
method as compared to HA method. The highest PET 
simulation by PM method may be due to consideration of 
both temperature and radiation factors and as the study area 
is not under humid climatic condition, the PT method 
predicts low PET as compared to HA method. However, 
annual AET is lower in PM method (538.1 mm) in compari-
son to HA method (559 mm). This may be due to the fact that 
the transpiration inbuilt in PM method is more physically 
based compared to other two methods, where the transpira-
tion is estimated by multiplying a simplified leaf area index 
(LAI) based factor with PET. PT method predicts the lowest 
AET (479.5 mm). Similarly, HA and PM methods simulated 
other components of annual water balance like surface 
runoff, lateral flow, percolation and groundwater recharge 
very close to each other. However, PT method overesti-
mated these water balance components as compared to HA 
and PM methods.

Performance Evaluation 

2The statistical tools such as R , NSE, PBIAS and RMSE 
were used for performance evaluation of SWAT with respect 
to streamflow simulation during calibration and validation 

2 (Table 6). According to R and NSE values, the SWAT model 
simulates PET very effectively in all PET methods as 
ascertained from the values of these indices, which are 
higher than the threshold value of 0.75 (Padhiary et al., 
2019). Percentage bias (PBIAS) is also below the threshold 
limit of 20% during calibration and validation periods in 

both HA and PM methods but exceeds the threshold limit in 
3 -1PT method. RMSE values were found to be 217.63 m s , 

3 -1 3 -1 223.79 m s  and 319 m s in HA, PM and PT methods 
3 -1 3 -1during calibration and 204.08 m s , 200.47 m s  and 228.38 

3 -1m s  during validation period, respectively. It is observed 
that RMSE values are also closely estimated in case of HA 
and PM method, however RMSE is higher in case of PT 
method. It is further observed from the indices that both HA 
and PM methods are performing neck to neck when used in 
SWAT model, where as in case of PT method the values are 
much deviating. 

From the results of model performance, it may be 
concluded that HA method is the best performing one 
among the three methods under the condition of limited 
climatic data with only maximum and minimum tempera-
tures. The finding has a close agreement with the results of 
Kannan et al., 2007 and Aouissi et al., 2016 derived on 
similar aspects. PM method using observed maximum and 
minimum temperature data with simulated average data of 
solar radiation, relative humidity, and wind speed also 
performed very close to HA method. However, PT method 
is not a good choice for streamflow estimation using SWAT 
in 

Kantamal catchment at the middle reach of Mahanadi 
river basin, which comes under the eastern Indian river 
basins prevalent with typical sub-topical and sub-humid 
climate. 

Spatial Distribution of PET 

Spatial distribution of PET was predicted by all the 
three methods in 15 sub-watersheds of Kantamal catchment 
as shown in Fig. 10. The lowest predicted value of PET is 
1506.97 mm, 1828.01 mm and 1378.44 mm and the highest 
value of PET is 1917.07 mm, 2064.97 mm and 1486.57 mm 
in HA, PM and PT methods, respectively. The spatial 
distribution map indicates a significant pattern of PET 
distribution among the sub-watersheds of the catchment. In 
HA method, the sub-watersheds namely, 10, 6, 3 and 2 show 
higher PET towards north-west part of the catchment 
whereas, under PM method the sub-watershed 12, 2, 14 and 
1 show higher PET than other sub-watersheds. In case of PT 
method, sub-watersheds with index number 13, 15, 12 and 
14 show higher PET and these sub-watersheds are present in 
cluster at south-west corner of the catchment. As there is a 

Table: 6
Summary statistics of model performance under different PET methods

Indices Calibration Validation

HA method PM method PT method HA method PM method PT method 
2R 0.94 0.93 0.87 0.87 0.86 0.84

NSE 0.88 0.88 0.75 0.83 0.83 0.78
PBIAS -17.00 -18.00 -21.00 -16.00 -20.00 -32.00

2 -1RMSE (m s ) 217.63 223.79 319.22 204.08 200.47 228.38

Table: 5
Water balance components under different methods 

Water balance  PM HA PT 
components (mm) method method method

PET 1914.5 1809.0 1441.8
ET 538.1 559.0 479.5
Surface Runoff 664.6 663.7 687.9
Groundwater Recharge 13.4 12.4 15.0

Fig. 10. Spatial distribution of PET under (a) HA method, (b) PM 
method, and (c) PT method

(a)

(b)

(c)

Fig. 11. Temporal distribution of average PET under different 
methods
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distinct spatial variation in PET under the three methods, 
therefore, optimal care must be taken while using SWAT 
model for ET based irrigation planning and crop water 
management. Validation of ET is therefore recommended 
for such regional studies to screen out the most suitable PET 
method. However, non-availability of observed time series 
ET data is a great constraint in such studies for developing 
countries like India. 

Temporal Distribution of PET

The temporal distribution of monthly PET under the 
three methods is illustrated in Fig. 11. It is observed that PM 
method predicts the highest monthly PET than other two 
methods over the years. The HA method shows medium 
level of PET, lower than the PM method, and PT method 
predicts the lowest PET among the three methods. Monthly 
cumulative PET increases in summer months i.e., from 
March to June. The same pattern is observed in HA and PM 
methods, while PT method does not follow the temporal 
pattern of ET in the region. Therefore, PT method is not 
suitable for PET estimation or ET based crop planning in the 
study area as well as in other areas having similar climatic 
conditions.

4. CONCLUSIONS

Stream flow of Kantamal catchment has been simu-
lated at monthly time step using three PET estimation 
methods. In HA method, the maximal and minimal 
temperatures obtained from IMD gridded data were used 
whereas, in other two methods the maxima land minimal 
temperature data in addition to other simulated climatic data 
from an average climate data base of IMD were used. 

2Statistical indices like R , NSE values were found to be the 
highest and PBIAS, RMSE were the lowest in case of HA 
method. The results depict that temperature based HA 
method is most effective for streamflow modeling at par 
with the physically based PM method using simulated 
climatic data of wind speed, relative humidity and solar 
radiation.  However, the model performance using PT 
method is little inferior to other two methods. The values of 
P- and R-factors were found to be 0.77 and 0.46 during 
calibration period and 0.79 and 0.47 during validation 
period, respectively. The HA method is adjudged as the best 
PET method as it predicts streamflow more accurately than 
the other two methods. There is a very negligible difference 
in streamflow simulation using HA and PM methods and so, 
it may be concluded that either of the two methods may be 
used depending upon the data availability. There is signifi-
cant variation in spatio-temporal behavior of PET under the 
three methods. Therefore, it is emphasized to undertake 

Water Balance 

Annual water balance simulation of Kantamal 
catchment has been figured using the check tool of the 
SWAT model as shown in Table 5. It depicts the highest 
annual PET (1914.5 mm) under PM method followed by 
HA (1809.0 mm) and PT (1441.8 mm) method. The PET is 
over-estimated in PM method and under-estimated in PT 
method as compared to HA method. The highest PET 
simulation by PM method may be due to consideration of 
both temperature and radiation factors and as the study area 
is not under humid climatic condition, the PT method 
predicts low PET as compared to HA method. However, 
annual AET is lower in PM method (538.1 mm) in compari-
son to HA method (559 mm). This may be due to the fact that 
the transpiration inbuilt in PM method is more physically 
based compared to other two methods, where the transpira-
tion is estimated by multiplying a simplified leaf area index 
(LAI) based factor with PET. PT method predicts the lowest 
AET (479.5 mm). Similarly, HA and PM methods simulated 
other components of annual water balance like surface 
runoff, lateral flow, percolation and groundwater recharge 
very close to each other. However, PT method overesti-
mated these water balance components as compared to HA 
and PM methods.

Performance Evaluation 

2The statistical tools such as R , NSE, PBIAS and RMSE 
were used for performance evaluation of SWAT with respect 
to streamflow simulation during calibration and validation 

2 (Table 6). According to R and NSE values, the SWAT model 
simulates PET very effectively in all PET methods as 
ascertained from the values of these indices, which are 
higher than the threshold value of 0.75 (Padhiary et al., 
2019). Percentage bias (PBIAS) is also below the threshold 
limit of 20% during calibration and validation periods in 

both HA and PM methods but exceeds the threshold limit in 
3 -1PT method. RMSE values were found to be 217.63 m s , 

3 -1 3 -1 223.79 m s  and 319 m s in HA, PM and PT methods 
3 -1 3 -1during calibration and 204.08 m s , 200.47 m s  and 228.38 

3 -1m s  during validation period, respectively. It is observed 
that RMSE values are also closely estimated in case of HA 
and PM method, however RMSE is higher in case of PT 
method. It is further observed from the indices that both HA 
and PM methods are performing neck to neck when used in 
SWAT model, where as in case of PT method the values are 
much deviating. 

From the results of model performance, it may be 
concluded that HA method is the best performing one 
among the three methods under the condition of limited 
climatic data with only maximum and minimum tempera-
tures. The finding has a close agreement with the results of 
Kannan et al., 2007 and Aouissi et al., 2016 derived on 
similar aspects. PM method using observed maximum and 
minimum temperature data with simulated average data of 
solar radiation, relative humidity, and wind speed also 
performed very close to HA method. However, PT method 
is not a good choice for streamflow estimation using SWAT 
in 

Kantamal catchment at the middle reach of Mahanadi 
river basin, which comes under the eastern Indian river 
basins prevalent with typical sub-topical and sub-humid 
climate. 

Spatial Distribution of PET 

Spatial distribution of PET was predicted by all the 
three methods in 15 sub-watersheds of Kantamal catchment 
as shown in Fig. 10. The lowest predicted value of PET is 
1506.97 mm, 1828.01 mm and 1378.44 mm and the highest 
value of PET is 1917.07 mm, 2064.97 mm and 1486.57 mm 
in HA, PM and PT methods, respectively. The spatial 
distribution map indicates a significant pattern of PET 
distribution among the sub-watersheds of the catchment. In 
HA method, the sub-watersheds namely, 10, 6, 3 and 2 show 
higher PET towards north-west part of the catchment 
whereas, under PM method the sub-watershed 12, 2, 14 and 
1 show higher PET than other sub-watersheds. In case of PT 
method, sub-watersheds with index number 13, 15, 12 and 
14 show higher PET and these sub-watersheds are present in 
cluster at south-west corner of the catchment. As there is a 

Table: 6
Summary statistics of model performance under different PET methods

Indices Calibration Validation

HA method PM method PT method HA method PM method PT method 
2R 0.94 0.93 0.87 0.87 0.86 0.84

NSE 0.88 0.88 0.75 0.83 0.83 0.78
PBIAS -17.00 -18.00 -21.00 -16.00 -20.00 -32.00

2 -1RMSE (m s ) 217.63 223.79 319.22 204.08 200.47 228.38

Table: 5
Water balance components under different methods 

Water balance  PM HA PT 
components (mm) method method method

PET 1914.5 1809.0 1441.8
ET 538.1 559.0 479.5
Surface Runoff 664.6 663.7 687.9
Groundwater Recharge 13.4 12.4 15.0

Fig. 10. Spatial distribution of PET under (a) HA method, (b) PM 
method, and (c) PT method
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(c)

Fig. 11. Temporal distribution of average PET under different 
methods
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