

Vol. 47, No. 2, pp 163-171, 2019 Indian Journal of Soil Conservation

Online URL : http://indianjournals.com/ijor.aspx?target=ijor:ijsc&type=home

Evaluation of soil moisture retention characteristics using pedo-transfer functions for soils of dry semi-arid region

M. Lalitha^{1,*}, S. Dharumarajan¹, K.S. Anil Kumar¹, Shivanand¹, S. Parvathy¹, Arti Koyal¹, B. Kalaiselvi¹, Rajendra Hegde¹ and S.K. Singh²

¹ICAR-National Bureau of Soil Survey and Land Use Planning, Regional Centre, Bangalore; ²ICAR-National Bureau of Soil Survey and Land Use Planning, Nagpur.

*Corresponding author: E-mail: mslalit@yahoo.co.in (M. Lalitha)

ARTICLE INFO

Article history: Received : February, 2019 Revised : July, 2019 Accepted : August, 2019

Key words:

Dry semi-arid region Matric suction Pedo-transfer function Soil moisture retention Soil variables

1. INTRODUCTION

Plant available water is the amount of water stored in soil which is readily available to plants. It is important for crop growth and development, and depends mainly on soil properties. Plant available water in soil is measured by soil moisture retention, which is a hydro-physical characteristic of soil expressed as the dependence between soil water content and soil water potential. It is defined as water content of the soil at matric potential between 33 kPa (Field Capacity) and 1500 kPa (Permanent Wilting Point). The measurement of these soil water constants is both time and labour consuming and requires expensive special equipment. Mathematical models based on soil properties, otherwise known as pedo-transfer functions or equations have been proposed by many researchers to overcome these difficulties (Saxton and Rawls, 2006). Pedo-transfer

ABSTRACT

Soil moisture assessment is crucial factor for crop growth and development in arid and semi-arid regions of India where the impact of climate change is predominant. Soil moisture prediction models using pedo-transfer functions are helpful for predicting soil moisture using soil variables since direct estimation is expensive and timeconsuming. In the present study, three different models- Gupta and Larson, Rawls and Brakensiek, and Walczak models were employed to predict soil moisture of dry semiarid region of Tamil Nadu, India. The results revealed that Gupta and Larson, and Rawls and Brakensiek models (R²: θ_{FC} : 0.790 and θ_{PWP} : 0.899) performed better than Walczak model for predicting soil moisture, both at θ_{FC} and θ_{PWP} . However, an exclusive pedo-transfer function for predicting soil moisture was developed for semi arid region using variables selected through principal component analysis (PCA) and variable importance plot. Soil variables such as sand, silt, cation exchange capacity (CEC), exchangeable magnesium and soil electrical conductivity (EC) contributed significantly (P>0.05) to the soil moisture retention. Nevertheless, the model developed in the study resulted in more accurate estimation at 33 kPa ($R^2 = 0.887$) and 1500 kPa ($R^2 = 0.932$) matric suction compared to existing models. The developed models can be helpful for predicting soil hydraulic properties in dry semi-arid region with similar agro-ecological conditions.

> functions are typically regression equations derived from soil profile data sets. Among the soil properties, proportions of sand, silt, and clay in soil, soil organic matter, bulk density (BD), porosity, soil mineralogy, pH of soil solution, soil structure and surface area of soil particles are important factors which influence the soil moisture retention characteristics. Of these, soil structure highly correlates with water retained at lower tension, and that retained at higher tension is related to particle size distribution and soil mineralogy (Rawls et al., 1991). While the soil texture determines the matric pore systems, soil structure referred by aggregation led macro-pores control the water retention at lower tensions (Lipsius, 2002). Many models were developed by researchers throughout world and in India for estimating soil moisture at different suctions (Gupta and Larson, 1979; Rawls and Brakensiek, 1982; Kaur et al.,

2002, Patil et al., 2013; Dharumarajan et al., 2019). But the pedo-transfer models are region specific and the models developed for temperate regions may not be suitable for tropical region, where the edapho-climatic properties are different. Hence their application in tropical regions may not be feasible (Santra and Das, 2008). The same was confirmed by Botula et al. (2012) who found that the temperate climate pedo-transfer functions of Gupta and Larson (1979) and Rawls and Brakensiek (1982) largely overestimated water retention of soils in humid tropics, because the accumulation of Fe and Al in tropics and secondary calcium carbonate in arid and semi-arid condition tends to create soil mineralogy and soil structure, which are less common in temperate regions (Hodnett and Tomasella, 2002). Hence, there is always a need to validate the established models before estimating soil water potential for other regions. Similarly, there are no comprehensive pedo-transfer functions available for dry semi-arid region. In this context, the present study was aimed to develop pedo-transfer functions for field capacity and permanent wilting point for dry semi-arid regions of south India.

2. MATERIALS AND METHODS

Study Area

The study area, Kangayam grasslands, comes under the physiographic region of Tamil Nadu uplands and is one of the driest region of southern India. It lies between 77°43'19" and 77°27'06"E longitudes and 10°54'55" and 11°07'39"N latitudes characterised by ustic soil moisture and hyperthermic soil temperature regimes (Soil Survey Staff, 2003). The climate is semi-arid (dry) with mean annual rainfall (523 mm) ranging from 90 mm to 788 mm. The satellite imagery IRS Resourcesat-2 LISS IV (5.8 m resolution) in conjunction with Survey of India toposheets (1:50,000 scale) was used for the preparation of base maps showing land use and landform. Rainfed agriculture is predominant, and about 10% of the cultivated areas are irrigated with canal water. Major land use is agroforestry system in which field crops viz., maize (Zea mays), horse gram (Macrotyloma uniflorum) and groundnut (Arachis hypogaea) are intercropped with tree spp. (predominantly Acacia nilotica). The length of the growing period (LGP) is 90-120 days.

Soil Sampling and Analysis

Profile locations were identified based on landform, land use and slope characteristics for the detailed characterization of soil resources (Natarajan and Sarkar, 2010). Soil profiles in the cultivated fields were studied in catenary sequence for their morphological characteristics (Fig. 1). A total of 110 soil profiles were studied, and horizon-wise soil samples (138) from 32 soil profiles representing twelve identified soil series were collected. The morphological properties of one representative pedon from each soil series are presented in Table 1. The samples

Fig. 1. Geological formation and profile location in Kangayam block

were air-dried, grounded, sieved (<2 mm) and analysed for soil physical and chemical properties. Particle size analysis was carried out by international pipette method (Piper, 1966); soil pH and EC were measured in 1:2.5 soil : water suspension (Whitney, 1998). Gravimetric water contents at -33 kPa and -1500 kPa were estimated by pressure plate apparatus (Klute, 1986), and BD by core method (Blake and Hartge, 1986). Organic carbon (OC) was determined by Walkley and Black (1934) method. Calcium carbonate (CaCO₃) equivalent (%) was determined by Piper (1966) method. CEC was determined by neutral normal ammonium acetate method. The ESP was calculated using the formula given by USDA (Richards, 1954). The soils were classified according to soil taxonomy (Soil Survey Staff, 2003). The soil series identified are Aridic Lithic Ustorthents, Typic Haplustepts, Typic Rhodustalfs, Aridic Haplustepts, Calcic Haplustalfs and Typic Haplustalfs.

Model Developed

The soil properties analysed in laboratory were evaluated through PCA to select the most important variables or predictors for constructing new algorithm using XLSTAT program. Principal components (PCs) with eigen values more than one were selected (Kaiser, 1960) and further in each PC, the highly weighted variables were selected for further analysis of variable importance by classification and regression random forests method in XLSTAT program (ntree = 500, mtry = 3). The same were correlated using SPSS software (Waswa et al., 2013). Mean increase error and multivariate correlation coefficients were used to verify the degree of redundancy and variable selection (Andrews and Carroll, 2001). The most important variables selected were used to develop algorithms for estimating field capacity at -33 kPa and permanent wilting point at -1500 kPa. The results were validated using crossvalidation techniques.

Models Investigated

Three popular models *viz.*, Gupta and Larson (1979), Rawls and Brakensiek (1982) which is the modification of

Table: 1

Morphological properties and taxonomy of typifying pedon of soil series used in the study

Pedon No. and Depth (cm)	Horizon	Soil colour	Texture (M)	Structure	Effervescence
P1:Loamy-skeletal,	mixed, isohy	perthermic Typic Rhodustalfs			
0-14	Ар	Dark red (2.5YR 3/6)	Loamy sand	Sub-angular blocky	Nil
14-39	Bt1	Dark red (2.5YR 3/6)	Sandy loam	Sub-angular blocky	Nil
P2:Loamy-skeletal,	mixed isohy	perthermic Typic Rhodustalfs			
0-11	A	Dark brown (7.5YR 4/4)	Sand	Granular	Nil
11-19	Bw	Yellowish red (5YR 4/6)	Loamy sand	Granular	Nil
19-33	Bt1	Dark red (2.5Y 3/6)	Sandy loam	Sub-angular blocky	Nil
33-42	Bt2C	Dark red (2.5YR 3/3)	Sandy loam	Sub-angular blocky	Nil
42-56	СВ	Red (2.5YR 4/8)	Sandy loam	Massive	Nil
P3:Loamy-skeletal,	mixed, calca	reous isohyperthermic Calcic Haplustalfs			
0-15	Ар	Reddish brown (SYR 3/4)	Sandy loam	Sub-angular blocky	Slight
15-47	Bt1	Reddish brown(SYR 4/4)	Sandy clay loam	Sub-angular blocky	Strong
47-52 B41	Bt2	Yellowish red (5YR 4/6)	Sandy loam	Sub-angular blocky	Strong
P4:Loamy-skeletal,	mixea, caica	reous isonypertnermic Typic Hapiustalis	Classification	Culture and a state of the state	CI:-h+
0-13	Ap Dt1	Dark yellowish brown (10YR 3/4)	Clay loam	Sub-angular blocky	Slight
13-32	Btl	Dark prown (7.5YR 3/4)	Clay Ioam	Sub-angular blocky	Slight
32-07	BLZ	Dark reddish brown (SYR 3/4)	Clay	Sub-angular blocky	Slight
D7-90 DE Logmu mixed i	DLJ	Dark reduist brown (STR 5/4)	Clay	Sub-aliguial blocky	Strong
n 22	Sonyperineri	Dark brown (10VP 4/4)	Loomy cond	Sub angular blocky	Nil
22 40	Ap P+1	Vallowish rad (EVP 4/4)	Sandy loam	Sub-angular blocky	Nil
22-49 10 79	DL1 P+2	Vellowish red (SYR 4/6)	Sandy loam	Sub-angular blocky	Nil
49-78 78-105	Bt2 Bt3	Vellowish red (5YR $4/6$)	Sandy Joam	Sub-angular blocky	Nil
105-1/0	Bt3	Vellowish red (5VR $4/6$)	Sandy clay loam	Sub-angular blocky	Nil
P6·Loamv-skeletal	mixed isoby	uperthermic Aridic Rhodustalfs	Salidy Clay Ioalli	Sub-aliguial blocky	INII
0-10	An	Reddish brown (5YR 4/3)	Sandy loam	Sub-angular blocky	Nil
10-29	Bt1	Reddish brown (SYR 4/3)	Sandy loam	Sub-angular blocky	Slight
29-59	Bt2	Dark reddish brown (2.5YR 3/4)	Sandy clay loam	Sub-angular blocky	Nil
59-95	Bt3	Dark reddish brown (2.5YR 3/4)	Sandy clay loam	Sub-angular blocky	Nil
95-123	Bt4	Dark reddish brown (2.5YR 3/4)	Sandy clay loam	Sub-angular blocky	Nil
P7:Loamv-skeletal.	mixed. calco	reous isohvperthermic Aridic Lithic Ustorthents	,,		
0-22	Ap	Dark brown (7.5YR 3/4)	Sandy loam	Sub-angular blocky	Nil
P8: Loamy, mixed,	calcareous is	ohyperthermic Typic Haplustepts	,	0 /	
0-13	Ap	Dark brown (10YR 3/3)	Sandy loam	Sub-angular blocky	Strong
13-40	Bw	Dark yellowish brown (10YR 3/4)	Sandy clay loam	Sub-angular blocky	Violent
P9:Loamy-skeletal,	mixed, calca	reous isohyperthermic Typic Haplustepts			
0-12	0-12	Dark yellowish brown (10YR 4/4)	Sandy loam	Sub-angular blocky	Strong
12-40	12-40	Dark yellowish brown (10YR 3/4)	Sandy loam	Sub-angular blocky	Violent
40-63	40-63	Dark yellowish brown (10YR 3/4)	Sandy loam	Sub-angular blocky	Violent
P10: Loamy-skelete	al, mixed, iso	hyperthermic Aridic Haplustepts			
0-13	Ар	Dark brown (10YR 3/3)	Loamy sand	Granular	Nil
13-26	Bw1	Reddish brown (5YR 4/4)	Sandy loam	Sub-angular blocky	Nil
26-43	Bw2	Dark reddish brown (5YR 3/3)	Loamy sand	Sub-angular blocky	Nil
P11: Coarse, loamy	ı, mixed, calc	areous isohyperthermic Typic Haplustepts			
0-12	Ар	Very dark grayish brown (10YR 3/2)	Sandy loam	Sub-angular blocky	Strong
12-46	AB	Very dark grayish brown (10YR 3/2)	Sandy loam	Sub-angular blocky	Strong
46-66	Bw1	Dark brown (7.5YR 3/4)	Sandy loam	Sub-angular blocky	Violent
66-85	Bw2	Dark brown (7.5YR 4/4)	Sandy loam	Granular	Violent
85-98	Bw3	Strong brown (7.5YR 4/6)	Loamy sand	Granular	Violent
98-106	Bw4	Strong brown (7.5YR 4/6)	Sandy loam	Granular	Violent
106+	CBk	Pale brown (10YR 6/3)	Loamy sand	Granular	Violent
P12: Coarse, loamy	, mixea, caic	areous isonypertnermic Fluventic Haplustepts	Construction	Culture and a state of the state	N1:1
U-1U 10.26	Ар	very dark gray (10YR 3/1)	Sandy Joam	Sub-angular blocky	INII Nii
10-20 26 49	AZ D1	very dark gray (10YK 3/1) Roddish brown (5VR 4/4)	Sandy Joam	Sub-angular blocky	INII NII
20-48 19 67	BW1	Readish brown (SYR 4/4)	Sandy loam	Sub-angular blocky	INII NII
40-07 67-83	DWZ Bw/2	Reddish brown (SVR 4/4)	Joamy sand	Granular	INII NII
92-110	BC	Strong brown (7 5VP 5/6)	Loamy sailu	Massivo	INII NII
110-118	CR CR	Brownish vellow (10VR 6/8)	Loamy sand	Massive	NII
110-110	0	Drownian yellow (1011 0/0)	Loanny Sanu	141033146	INII

the Gupta and Larson model, and Walczak (1984) models were identified and soil moisture predictions were evaluated and compared. Gupta and Rawls model considered soil variables such as sand, silt, clay, OC and BD for predicting soil moisture, whereas Walczak model explained the variables of specific surface area (SSA), mean weight diameter of particles and BD (Table 2). The total SSA of soil with different amounts of sand, silt, and clay fractions was estimated as per Sepaskhah *et al.* (2010).

SSA = fc XSSAc +fsi XSSAs + fsa XSSAs

Where, *SSA* is the total specific surface area in m^2g^{-1} , and *fc*, *fsi*, and *fsa* are the clay, silt, and sand fractions of soil in percent, respectively. The mean weight diameter of particles (D) is calculated as:

$$D = \sum_{i=1}^{n} \left(\frac{(Di_{max} + Di_{min})}{2} \right) \ge Pi$$

Where, *n* is number of fractions, Di_{max} and Di_{min} are the maximum and minimum diameters of i^{th} fraction (mm), respectively, and P_i is the percentage content of i^{th} fraction.

The soil moisture retention characteristics of the soils were predicted using the model by XLSTAT software. The measured and predicted soil moisture content values were correlated for evaluation and the best model was selected based on R² and RMSE value.

$$RMSE = \sqrt{\frac{1}{n}} \sum_{i=1}^{n} (\theta_p - \theta_m)$$

Where, *n* is the number of sample and θ_p and θ_m are predicted and measured water contents, respectively.

3. RESULTS AND DISCUSSION

Physical and Chemical Properties

The soil properties were interpreted using coefficient of variation (CV) and it was found that silt, clay, CEC, exchangeable cations (Ca, Mg, Na and K), CaCO₃ and EC were the most variable soil properties (>35). The moderately variable properties (CV 15–35) were sand and

base saturation, and the least variable property was soil pH (<15) (Table 1). The intrinsic (weathering, erosion, deposition and soil-forming processes) and extrinsic (management practices) factors cause the variation in soil properties (Rao and Wagenet, 1985). The soils were mostly sandy, which has less SSA for water retention compared to clay (Hepper et al., 2006). Around 91% and 78% of the study samples had less than 20% clay and 20% silt content, respectively and belong to sandy loam, loamy sand and sand clay loam soil texture class. Both silt and clay tend to have more specific area and total porosity, which favour water absorption and retention (Reichert et al., 2009). The soils were non-saline $(EC < 2.5 dS m^{-1})$ and had a low OC content (OC < 0.5%). The soils were alkaline (pH>8) in range. Substantial amount of calcium carbonate nodules are present both in surface and subsurface layer, which favours soil particle aggregation (Pachepsky and Rawls, 2003). Exchangeable sodium, the property which imparts the property of dispersion was low in the samples (< 15 cmol (p+) kg⁻¹). The soil moisture retention at saturation, field capacity and permanent wilting point ranged from 13.1% to 48.67%, 3.24% to 36.49% and 0.98% to 26.74%, respectively (Table 3).

Principal Component Analysis (PCA)

The PCA showed that the first five PCs have eigen values >1 accounting for 83.5% of variance. Soil variables from each PC were considered for selection of variables. The grouping may provide better understanding of the relationship between soil properties (Siqueira et al., 2010). The first component (PC1) explained 48.5% of the variability mainly due to high variance of sand, silt and clay content, CEC, exchangeable magnesium, soil moisture retention at 1/3, 15 and 0 bar and, to a lesser extent, BD (>0.6). Among the parameters, except sum of cations, all other variables were selected for the study since it is a derived parameter which depends on sum of all exchangeable cations. However, among the factors, sand (-0.982) and silt (0.951) content have the highest factor loading followed by clay (0.926), CEC (0.822), exchangeable magnesium (0.796) and BD (-0.672). Other selected variables were exchangeable Ca/Mg ratio (0.969)

Table: 2

redotransfer model adopted for the prediction of water retention characteristics	edotransfer model ad	opted for the prediction of v	vater retention characteristics
--	----------------------	--------------------------------------	---------------------------------

Model equation	Parameters
Gupta and Larson (1979)	
Predicted water content $\theta \rho$ (m ³ m ³) = $a1X1+a2X2+a3X3+a4X4+a5X5$	X1 - Sand (%), X2 - Silt (%), X3 - Clay (%), X4 - Organic C (%), X5 - Bulk Density (Mg m ³), a1, a2, a3, a4 and a5 - Regression Coefficients
Rawls and Brakensiek (1982)	
Predicted water content $\theta \rho$ (m ³ m ³) = $a0+a1X1+a2X2+a3X3+a4X4+a5X5$	X1 - Sand (%), X2 - Silt (%), X3 - Clay (%), X4 - Organic C (%), X5 - Bulk Density (Mg m ⁻³), a0,a1, a2, a3, a4 and a5 - Regression Coefficients
Walczak model (1984)	
Predicted water content $\theta \rho$ (m ³ m ³) = b0+b1Y1+b2Y2+b3Y3	Y1 - Specific Surface Area (m ² g ⁻¹), Y2 - Mean weight diameter of particles (mm), Y3 - Bulk density (Mg m ⁻³), b0,b1, b2, b3 - Regression Coefficients

Table: 3			
Descripti	ive statistic	s of soil	properties

Soil parameters				Descriptive stat	istics	
	Max	Min	Mean	Std. dev	CV	Shapiro-Wilk test (P=0.05)
Sand [%]	88.23	11.24	70.36	15.44	21.95	< 0.0001
Silt [%]	49.39	2.31	15.82	9.04	57.17	< 0.0001
Clay [%]	39.37	6.72	13.82	7.09	51.28	< 0.0001
pH [1:2.5]	8.92	6.23	8.29	0.70	8.50	< 0.0001
EC [1:2.5][dS m ⁻¹]	0.85	0.03	0.22	0.15	66.86	< 0.0001
Calcium Carbonate Equivalent [%]	38.54	0.00	6.00	6.91	115.24	< 0.0001
Bulk Density (Mg m ⁻³)	1.941	1.342	1.688	0.128	7.58	0.012
OC [%]	0.86	0.00	0.32	0.22	66.49	0.001
CEC [cmol (p+) kg ⁻¹]	58.83	2.49	13.87	9.67	69.73	< 0.0001
Exch. Ca	52.04	1.74	15.68	10.36	66.03	0.000
Exch. Mg	23.36	1.37	7.87	4.99	63.50	0.001
Exch. Na	1.37	0.01	0.29	0.29	101.05	< 0.0001
Exch. K	1.16	0.07	0.36	0.28	77.27	< 0.0001
Sum of Ex. Cations [cmol (p+) kg ⁻¹]	75.12	5.65	24.20	13.18	54.45	0.005
Ca/Mg	12.19	0.45	2.81	2.64	93.85	< 0.0001
ESP [%]	12.95	0.06	2.57	2.72	106.08	< 0.0001
EMP [%]	18.61	0.52	3.30	3.07	93.08	< 0.0001
BS [%]	304.54	84.86	186.76	48.96	26.22	0.534
Soil moisture retention ~ 1/3 bar [%]	36.49	3.24	14.58	7.30	50.07	0.053
Soil moisture retention ~ 15 bar [%]	26.74	0.98	7.02	4.78	68.05	< 0.0001
Soil moisture retention ~ 0 bar [%]	48.67	13.61	27.46	8.43	30.69	0.196

from PC2, exchangeable sodium (0.824) and exchangeable sodium percent (0.946) from PC3, electrical conductivity (0.957) and exchangeable K (0.688) from PC4, and calcium carbonate equivalent (CCE) (0.963) from PC5. All these variables had highest loading in their respective PCs and were chosen for variable importance plot as well as correlation for further selection of variables (Table 4). Interestingly, OC variable was not a part of any of the PCs, which may be due to very low value (mean-0.32%) and uncertainty in most soil profile databases due to dry semi-arid situation (Reynolds *et al.*, 2000).

Selection of Soil Variables

Classification and regression random forest was applied to the variables selected through PCs to identify the most important variables which have significant influence on soil moisture retention based on mean increase in error value. The variables in descending order of sand (7.342), silt (4.713), exchangeable magnesium (ex. Mg: 3.657), clay (2.978), cations sum (1.235), CEC (1.097), EC (0.591), CCE (0.218) and BD (0.209) were found to be the most important variables for predicting moisture retention at 0.3 bar matric potential (Fig. 2). Similarly, variables such as sand (12.030), ex. Mg (9.329), clay (8.836), silt (3.905), cations sum (3.511), EC (3.279), CEC (3.270), ex. K (1.129) and BD (0.153) were found important for predicting moisture retention at 15 bar matric potential. Variables with higher values of percentage increase in mean square error (MSE) contribute more to the predictive accuracy (Mcinerney et al., 2010). Pearson correlation was worked

Ta	b	e:	4
----	---	----	---

Princi	oal com	ponents.	eigen v	alues and	d comp	onent	matrix v	/ariable	s
									-

	F1	F2	F3	F4	F5
Eigen value	9.70	2.36	1.82	1.62	1.21
% variance	48.5	11.8	9.1	8.1	6.0
% cumulative variance	48.5	60.3	69.4	77.5	83.5
Factor loadings					
Sand	-0.982	0.028	0.001	-0.055	-0.007
Silt	<u>0.951</u>	-0.032	-0.025	0.152	-0.069
Clay	0.926	-0.020	0.029	-0.075	0.104
OC	0.224	0.053	-0.030	0.045	0.027
CEC	0.822	0.286	-0.023	0.141	0.027
PH	0.278	0.047	0.011	0.237	0.100
EC	0.184	0.010	0.044	<u>0.957</u>	0.014
CCE	0.214	-0.107	-0.027	0.004	0.963
Ca	0.633	0.641	-0.026	0.133	0.000
Mg	0.796	-0.342	0.198	0.264	0.192
Na	0.410	0.120	0.824	0.078	-0.069
К	0.334	-0.158	-0.123	0.688	-0.017
Sum of cations	0.815	0.374	0.070	0.221	0.071
SMR ~ 1/3 bar [%]	0.873	-0.028	-0.011	0.213	0.222
SMR ~ 15 bar [%]	0.932	-0.082	0.042	0.103	0.166
SMR ~ 0 bar [%]	0.812	0.021	0.050	0.239	0.195
Ca/Mg	-0.142	0.969	-0.059	-0.088	-0.114
ESP	-0.190	-0.154	0.946	-0.051	0.016
EMP	-0.138	-0.144	-0.080	0.164	-0.010
BD	<u>-0.672</u>	0.033	0.033	0.039	-0.197

out for the parameters selected through PCA for further confirmation. Correlation between the properties revealed that θ_s , θ_{FC} and θ_{PWP} were positively correlated with silt, clay, CEC, exchangeable calcium, and magnesium, and

Fig. 2. Relative variable importance of soil variables for predicting soil moisture retention at field capacity (0.33 kPa) and permanent wilting point (15 kPa)

negatively correlated with sand, BD and exchangeable sodium percent (Das and Verma, 2011; Ceddia et al., 2009) (Table 5). The significant positive correlation with silt (θ_s : 0.782^{**} , θ_{FC} : 0.832^{**} and θ_{PWP} : 0.896^{**}) and clay (θ_{S} : $0.822^{**}, \theta_{FC}: 0.858^{**}$ and $\theta_{PWP}: 0.908^{**}$) is an indication of greater water holding capacity in micro-pores of clay and silt-sized particles (Iqbal et al., 2005). The effect of BD on moisture retention increased with increasing pressure (θ_s : - 0.630^{**} , θ_{FC} : -0.653**and θ_{PWP} : -0.668**). The calcium carbonate equivalent (θ_s : 0.396**, θ_{FC} : 0.436**and θ_{PWP} : 0.382**) and exchangeable magnesium (θ_s : 0.819**, θ_{FC} : 0.836** and θ_{PWP} : 0.866**) were highly correlated with moisture retention at θ_s , θ_{FC} and θ_{PWP} due to their positive impacts on soil aggregation and flocculation. In addition, CEC, a measure of number of negatively-charged binding sites in soil, and explains the SSA of soil (Rashidi and Seilsepour, 2008), correlates positively with soil moisture at different matric suctions (θ_s : 0.649**, θ_{FC} : 0.737**and θ_{PWP} : 0.807**). Finally, the moisture content of the soil corresponding to a particular tension is influenced by soil texture (Patil et al., 2013), structure (Esmaeelnejad et al., 2015), soil electrolyte concentration (Mamedov, 2014) and temperature (Joseph, 2010). Accordingly, the new model considered sand, and silt to explain the influence of texture, CEC and exchangeable magnesium to represent soil structure, electrical conductivity signifying electrolyte concentration in soil solution, and BD to represent soil porosity. The variables were selected based on RMSE and \mathbf{R}^2 value, which indicate the extent to which the dependent variable is explained by the independent variables.

Soil Moisture Retention Prediction

The comparison of different models in predicting moisture retention revealed that the established models were on par except the model developed in the study. The developed model showed comparatively higher prediction value at θ_{FC} and θ_{PWP} matric suction, and its prediction is close to the estimated value ($\theta_{FC} R^2 = 0.887$ and $\theta_{PWP} R^2 = 0.939$) (Table 6). The plot of residuals versus predicted value of new algorithm showed that the residuals are equally spread

Correlation co	efficient of h	ighly loadeo	l parameter.	s in Principa	l Compone	ents 1 to 5										
	Sand	Silt	Clay	CEC	EC	CCE	Ex. Mg	Ex. Na	Ex. K Ca	tions sum	~ 1/3 bar	~ 15 bar	~ 0 bar C	a/Mg I	ESP BD	1 1
Sand	1															
Silt	967**	1														
Clay	945**	.831**	1													
CEC	804**	.800**	.731**	1												
EC	228	.303*	.109	.294*	1											
CCE	235	.145	.327*	.178	.065	1										
Ex. Mg	816**	.784**	.779**	.633**	.440**	.408**	1									
Ex. Na	405**	.393**	.382**	.413**	.218	005	.495**	1								
Ex. K	406**	.426**	.342*	.286	.722**	.100	.530**	.021	1							
Cations sum	814**	.803**	.750**	.925**	.394**	.224	.670**	.475**	.360*	1						
~ 1/3 bar	881**	.832**	.858**	.737**	.408**	.436**	.836**	.377**	.465**	.817**	1					
~ 15 bar	942**	.896**	.908**	.807**	.299*	.382**	.866**	.453**	.392**	.804**	.895**	1				
~ 0 bar _0	835**	.782**	.822**	.649**	.431**	.396**	.819**	.388**	.532**	.781**	.925**	.817**	1			
Ca/Mg	.168	165	155	.153	109	242	499**	.029	299*	.214	192	228	143	1		
ESP	.189	212	143	252	066	040	.051	.613**	205	165	192	156	133	177	1	
BD	.751**	675**	775**	551**	042	390**	597**	194	340*	559**	653**	668**	·630**	.161	.150 1	
*Correlation is si	anificant at th	e 0.05 level (2	-tailed) ; **Co	orrelation is si	anificant at	the 0.01 leve	el (2-tailed)									1

20

10

0

capacity (0.33 kPa) and permanent wilting point (15 kPa) by developed model

Fig. 4. Comparison between measured to predicted soil moisture retention at field

30 40 50 **0measured ~0.33 kPa**

0

10

20

30

40

θmeasured ~ 15 kPa

50

10

0

0

10

20

mediation = 56.24616-0.57392*Sand-0.47375*Silt+0.044657*CEC+0.70034*BD+0.26435*Mg+10.67007*EC 0.0013 + 21.61717-0.30018*Sand-0.17762*Silt+0.081139*CEC+3.54735*BD+0.27389*Mg+0.31671*EC = -0.11592*Sand+0.13402*Silt+0.29046*Clay+1.27333*OC%+5.11389*BD = -0.02285*Sand+0.29046*Silt+0.59299*Clay-2.81349*OC%+2.55353*BD rediction = 29.04594-0.40638*Sand-0.15644*Silt+1.27333*OC%+5.11389*BD = 59.29972-0.61585*Sand-0.30254*Silt-2.81349*OC%+2.55353*BD rediction = 26.19224+3.47336*BD-0.30022*MWD+0.38426*SSA = 13.91098+4.69759*BD-0.23906*MWD+0.22551*SSA Regression Model Ð Œ Ð Ð Ð Ð θ 0.899 0.899 0.790 0.784 0.896 0.939 0.790 0.887 Ъ2 ~ SMR ~ 0.3 bar (%) ~ SMR ~ 0.3 bar (%) SMR ~ 0.3 bar (%) SMR ~ 0.3 bar (%) SMR ~ 15 bar (%) SMR ~ 15 bar (%) ~ SMR ~ 15 bar (%) SMR ~ 15 bar (%) Predicted vs Measured 2 $= 0.47514+0.93235*\theta_{Measured}$ $= 1.95329+0.86602*\theta_{\text{Messured}}$ е 8 $\theta_{\text{walczak}} = 3.14896 \pm 0.78401 \pm \theta_{\text{M}}$ $\theta_{\text{walczak}} = 0.73178 + 0.89580 * \theta_{\text{A}}$ $\theta_{\text{Rawk}} = 3.06068 + 0.79006^* \theta_{\text{Me}}$ $\Theta_{\text{Rawk}} = 0.71146 + 0.89869$ $\theta_{\text{Gupta}} = 0.96841^{*}\theta_{\text{Measured}}$ $\theta_{\text{Gupta}} = 0.95864^* \theta_{\text{Me}}$ θ_{New} θ_{New} S.No. -2 \mathbf{m} 4

Comparison of predicted and measured values

Table: 6

with defined shape along the horizontal line meeting the homoscedasticity of linear assumption (Mueller, 2003) (Fig. 3). The standardised residuals were between -2 to 2 (-1.393 to 1.673), which indicate that values are normally distributed and the standard deviation to mean (maximum-0.804) is less than 2 (Stephanie, 2017). The better prediction is because of the selected variable according to evaluation criteria which could better explain the moisture retention for the given agro-ecological situation. Hence the model may be applied in places with similar agro-ecological situation where rainfall is uncertain and evapotranspiration is high. In all the pedo-transfer functions, the R² value was low for θ_{FC} (0.784, 0.790, 0.790 and 0.866) compared to θ_{PWP} (0.896, 0.899, 0.899 and 0.939) (Tomasella and Hodnett, 2004) because water in the wet range of the retention curve is more allied to the soil structural properties whereas the dry range depends more on the soil texture (Vereecken et al., 2010). Once again, the R² value in predicting permanent wilting point was high in newly developed model compared to the existing model. The results are identical with Medina et al. (2002) who found that clay type rather than clay content range is crucial for soil moisture retention and transmission. The study soils have a mixed mineralogy with varying types and amount of clay minerals. Clay mineral identification and quantification on a routine basis is difficult, therefore CEC of soil is substituted to reflect the kind of clay minerals in soil (Lambooy, 1984). Hence the selection of CEC variable in the proposed model increased the R^2 value to 0.939 for the θ_{PWP} (Fig. 4). At the same time, the prediction error for the θ_{FC} is increased (R² = 0.887) and the accuracy is lower than θ_{PWP} It might be because of soil structure attributes which is not adequately explained and predicted by soil BD in the present study. Hence a more representative variable such as aggregate stability index can be used for expanding the soil structure in future studies for higher accuracy.

4. CONCLUSIONS

Pedo-transfer function for predicting soil moisture retention characteristics using available data sets are one among the predominant cost effective tools for assessing its spatial variability. In this study, pedo-transfer functions were developed for the dry semi-arid agro region of south India considering variables that were identified through PCA and variable importance plot. The variables such as sand, silt, CEC, exchangeable magnesium, electrical conductivity and BD of the soil could better explain factors that influence soil moisture content, and significant better multiple correlation coefficients (P > 0.05) were also obtained. Hence, the developed model could be of great help in predicting soil moisture in places where agro-ecological conditions are similar. Besides, the study used disturbed soil sample for the measurement as well as prediction. Since the soil moisture retention at lower tension is dependent on soil

structure, the developed algorithm can be evaluated in undisturbed soil to study the effect of structure on soil moisture retention at different suctions. Future studies in this line may also utilize independent variables such as aggregate stability to better explain the soil structural properties for greater results in the lower matric tension.

REFERENCES

- Andrews, S.S. and Carroll, C.R. 2001. Designing a soil quality assessment tool for sustainable agroecosystem management. *Eco. Appl.*, 11: 1573–1585.
- Blake, G.R. and Hartge, K.H. 1986. Bulk density. In: A. Klute (ed.) Methods of soil analysis. Part 1. 2nd edition. *Agron. Monogr.* 9. ASA and SSSA, Madison, WI, pp 363–375.
- Botula, Y.D., Cornelis, W.M., Baert, G. and Van Ranst, E. 2012. Evaluation of pedotransfer functions for predicting water retention of soils in Lower Congo (D.R. Congo). Agric. Water Manag., 111: 1-10.
- Ceddia, M.B., Vieira, S.R., Vilella, A.L.O., Mota, L.S., Anjos, L.H.C. and Carvalho, D.F. 2009. Topography and spatial variability of soil physical properties. *Scientia Agricola, Piracicaba.*, 66(3): 338-352.
- Das, M. and Verma, O.P. 2011. Derivation and validation of pedotransfer functions for point estimation of soil moisture in sandy to clayey soil texture. J. Agric. Phys., 11:21-25.
- Dharumarajan, S., Hegde, R., Lalitha, M., Kalaiselvi, B. and Singh, S.K. 2019. Pedotransfer functions for predicting soil hydraulic properties in semi-arid regions of Karnataka Plateau, India. *Curr. Sci.*, 116(7): 1237-1246.
- Esmaeelnejad, L., Hassan, R., Javad, S. and Mahmood, S.. 2015. Selection of a suitable model for the prediction of soil water content in north of Iran. Spanish J. Agric. Res., doi:10.5424/sjar/2015131-6111.
- Gupta, S.C. and Larson, W.E. 1979. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. *Water Resour. Res.*, 15(6): 1633-1635.
- Hepper, E.N., Buschiazzo, D.E., Hevia, G.G., Urioste, A. and Anton, L. 2006. Clay mineralogy, cation exchange capacity and specific surface area of loess soils with different volcanic ash contents. *Geoderma*, 135: 216-223.
- Hodnett, M.G. and Tomasella, J. 2002. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedotransfer function developed for tropical soils. *Geoderma*, 108:155-180.
- Iqbal, J., Thomasson, J.A., Jenkins, J.N., Owens, P.R. and Whisler, F.D. 2005. Spatial variability analysis of soil physical properties of alluvial soils. *Soil Sci. Soc. Am. J.*, 69: 1338–1350.
- Joseph, M. 2010. A study on the water retention characteristics of soils and their improvements. Ph.D thesis submitted to Division of civil engineering, School of engineering, Cochin University of science and technology, Kochi.
- Kaiser, H.F. 1960. The application of electronic computers to factor analysis. *Educ. Psychol. Meas.*, 29: 141–151.
- Kaur, R., Kumar, S., Gurung, R.P., Rawat, J.S., Singh, A.K., Prasad, S. and Rawat, G. 2002. Evaluation of pedotransfer functions for predicting field capacity and wilting point moisture content from routinely surveyed soil texture and organic carbon data. J. Indian Soc. Soil Sci., 50: 205-208.
- Klute, A. 1986. Water retention: Laboratory methods. In: A. Klute (ed.). Methods of soil analysis. Part 1, 2nd edition. *Agron. Monogr.* 9. ASA and SSSA, Madison, WI, pp. 635–662.
- Lambooy, A.M. 1984. Relationship between cation exchange capacity, clay content and water retention of Highveld soils. *South Afr. J. Plant Soil*, 1(2): 33-38.
- Lipsius, K. 2002. Estimating Available Water Capacity from basic Soil physical Properties- A comparison of common Pedotransfer Functions, Department of Geoecology, Braunschweig Technical University, Germany.
- Mamedov, A.I. 2014. Soil water retention and structure stability as affected by water quality. *Eur. J. Soil Sci.*, 3: 89-94.

- Mcinerney, D.O., Minguez, J.S., Valbuena, R. and Nieuwenhuis, M. 2010. Forest canopy height retrieval using LiDAR data, medium-resolution satellite imagery and kNN estimation in Aberfoyle, Scotland. *Forestry*, 83(2):195-296.
- Medina, H., Tarawally, M., Valle, A.D. and Ruiz. M.E. 2002. Estimating soil water retention curve in rhodic ferralsols from basic soil data. *Geoderma*, 108: 277-285.
- Mueller, A.B. 2003. Chapter 12: Regression: Basics, Assumptions, Diagnostics. https://ademos.people.uic.edu/Chapter12.html.
- Natarajan, A. and Sarkar, D. 2010. Field Guide for Soil Survey. ICAR-NBSS&LUP, Nagpur, 73p.
- Pachepsky, Y.A. and Rawls, W.J. 2003. Soil structure and pedotransfer functions. *Eur. J. Soil Sci.*, 54: 443-451.
- Patil, N., Tiwary, P., Pal, D., Bhattacharyya, T., Sarkar, D., Mandal, C., Mandal, D., Chandran, P., Ray, S., Prasad, J., Lokhande, M. and Dongre, V. 2013. Soil water retention characteristics of black soils of India and pedotransfer functions using different approaches. *J. Irrig. Drain. Eng.*, 139: 313-324.
- Piper, C.S. 1966. Soil and Plant Analysis. Hans Publisher, Bombay.
- Rao, P.S.C. and Wagenet, R.J. 1985. Spatial variability of field soils: methods for data analysis and consequences. *Weed Sci.*, 33: 18-24.
- Rashidi, M. and Seilsepour, M. 2008. Modeling of soil cation exchange capacity based on some soil physical and chemical properties. J. Agric. Biol. Sci., 3(2): 6-13.
- Rawls, W.J. and Brakensiek, D.L. 1982. Estimating soil water retention from soil properties. J. Irrig. Drain. Eng., 108: 166-171.
- Rawls, W.J., Gish, T.J. and Brakensiek, D.L. 1991. Estimating soil water retention from soil physical properties and characteristics. *Adva. Soil Sci.*, 16:213-234.
- Reichert, J.M., Suzuki, L.E.A.S., Reinert, D.J., Horn, R. and Hakansson, I. 2009. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. *Soil Till. Res.*, 102: 242-254.
- Reynolds, C.A., Jackson, T.J. and Rawls, W.J. 2000. Estimating soil water-holding capacities by linking the Food and Agriculture Organization soil map of the world with global pedon databases and continuous pedotransfer functions. *Water Resou. Res.*, 36(12): 3653-3662.
- Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soils. Agricultural hand book, 60. U.S. Department of Agriculture, Washington D.C., 160 p.

- Santra, P. and Das, B.S. 2008. Pedotransfer functions for soil hydraulic properties developed from a hilly watershed of Eastern India. *Geoderma*, 146:439-448.
- Saxton, K.E. and Rawls, W.J. 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. *Soil Sci. Soc. Am. J.*, 70: 1569-1578.
- Siqueira, D.S., Marques, J.R.J., Matias, S.S.R., Barrón, V., Torrent, J., Baffa, O. and Oliveira, L.C. 2010. Correlation of properties of Brazilian Haplustalfs with magnetic susceptibility measurements. *Soil Use Manag.*, 26:425-431.
- Soil Survey Staff, 2003. Keys to Soil Taxonomy. ninth ed. United States Department of Agriculture, Natural Resources Conservation Service, Washington, DC.
- Sepaskhah, A.R., Tabarzad, A. and Fooladmand, H.R. 2010. Physical and empirical models for estimation of specific surface area of soils. *Arch. Agron. Soil Sci.*, 56: 325–335.
- Stephanie, 2017. Standardized Residuals in Statistics: What are They? Statistics How To Theme by: Theme Horse Powered by: Word Press. http://www.statisticshowto.com/what-is-a-standardized-residuals/.
- Tomasella, J. and Hodnett. M.G. 2004. Pedotransfer functions for tropical soils. Dev. Soil Sci., 30: 415–429.
- Vereecken, H., Kollet, S. and Simmer. C. 2010. Patterns in soil vegetation – atmosphere systems: monitoring, modeling, and data assimilation. *Vadose Zone J.*, 9(4): 821-827.
- Walczak, R. 1984. Model investigations of relationship between water retention and soil solid phase parameters (in Polish). *Problemy Agrofizyki*, 41: 5-69.
- Walkley, A. and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. *Soil Sci.*, 37: 29–38.
- Waswa, B.S., Vlek, P.L.G., Tamene, L.D., Okoth, P., Mbakaya, D. and Aingore, S. 2013. Evaluating indicators of land degradation in small holder farming systems of western Kenya. *Geoderma*, 196: 192–200.
- Whitney, D.A. 1998. Soil salinity. In: Brown, J.R. (ed.), Recommended Chemical Soil Test Procedures for the North Central Region 221. North Central Regional Publication, Missouri Agric., (Exp, Stn. Bull. SB1001), pp 59–60 (revised).