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The Soil and Water Assessment Tool (SWAT) is a widely accepted semi-distributed 
model for watershed hydrological analysis. The facility of uncertainty analysis with 
the help of SWAT-Calibration and Uncertainty Procedures (SWAT-CUP) model is now 
capable to bring a variety of calibration and analysis techniques in one single platform, 
namely ParaSol, sequential uncertainty fitting (SUFI-2), Generalized Likelihood 
Uncertainty Estimation (GLUE), particle swarm optimization and Markov Chain 
Monte Carlo (MCMC). In the present study, the SWAT model has been calibrated for 
the period 1987-2000 considering initial 3 years as the warm-up period (1987–89) and 
validated from 2001-2010 for monthly streamflow simulation. Uncertainty analysis 
was carried out using SUFI-2 algorithm at Jaraikela gauging station of Bramhani river 
basin, India. The sensitivity of the parameters was determined according to the t-stat 
and p-value. Nine distinguished parameters were selected for sensitivity analyses. The 
performance of the model was evaluated satisfactorily on monthly time scale 
streamflow simulation using Nash–Sutcliffe Efficiency (NSE), the coefficient of 

2determination (R ) and Percentage BIAS (PBIAS). The P and R factors were used to 
2assess the degree of uncertainty. The values of NSE, R , and PBIAS were found to be 

0.84, 0.85 and -0.08 during the calibration period and 0.71, 0.73 and -0.17 during the 
validation period, respectively. The values of P and R factors were observed to be 0.79 
and 0.92, respectively during calibration, and 0.89 and 0.86 during the validation 
period, respectively. The simulated streamflow also well fitted within the 95 
percentage prediction uncertainty (95PPU) band of SUFI-2 algorithm during the 
calibration and validation periods indicating a satisfactory performance of the model 
under parameter uncertainty.

1. INTRODUCTION

Water is the most precious and prime natural resource 
and a major constituent of all living matters on the planet 
Earth. As the quantity of available water is constant and 
there is over-use of the same due to population rise and 
growing urbanization, it has progressively emerged as the 
most important national and international concern today. 
Hence, proper management of water resources is imperative 
to meet the need of current and future demands of the 
civilization (Panigrahi et al., 1992). Assessment of potential 
of water resources at basin or sub-basin scale may be a 
prerequisite to achieve it. Hydrological modeling is a key 
tool for water resource assessment and management in 

watershed scale. Several watershed models starting from 
simple empirical models to more complex physically based 
distributed models have been developed for the purpose by 
this time. Although, the physical principle of any hydrologic 
process is considered in formulating a model structure, the 
final design invariably is only an approximation of the 
natural system. This is because the modeler combines 
existing knowledge of physical processes with some 
conceptual representations of unknown principles 
underlying the process being modeled. Therefore, 
applications of any type of model are associated with 
several kinds of uncertainties with respect to model 
structure, parameters, input data and natural randomness. 
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minimized through intensive field investigation, adequate 
and efficient monitoring network, efficient parameter 
estimation tools and techniques (improved data collection), 
careful data handling, and efficient manufacturing and 
maintenance. A realistic assessment of the various sources 
of error is important for science-based decision making as 
well as to direct the research towards model structural 
improvements and uncertainty reduction. It is an accepted 
fact that hydrological model simulations should explicitly 
include an estimate of their associated uncertainty. 

Both sensitivity and uncertainty analysis are essential 
processes to reduce the uncertainties developed by the 
variations of model parameters and structure. Recently 
developed calibration and uncertainty analysis techniques 
for watershed models include: MCMC method (Vrugt et al., 
2003), GLUE method (Beven and Binley, 1992), ParaSol 
(Parameter Solution) method (Yang et al., 2008), and SUFI-
2 method (Abbaspour et al., 2004). These techniques 
(GLUE, ParaSol, SUFI-2 and MCMC) have been linked to 
SWAT model through SWAT-CUP (Abbaspour et al., 2007), 
and enable sensitivity and uncertainty analysis of model 
parameters as well as the structure (Rostamian et al., 2008). 
SWAT model calibration and uncertainty analysis using 
these techniques have been emphasized and confirmed 
through various studies worldwide, but also needs more 
investigations in different agro-climatic situations for 
enhancing the degree of confidence level. Abbaspour et al. 
(2004) and Yang et al. (2008) applied the SUFI-2 technique 
for evaluation of SWAT model. The SUFI-2 technique 
needs a minimum number of model simulations to attain a 
high-quality calibration and uncertainty results as compared 
to other techniques (Yang et al., 2008). In this study, stream-
flow simulation of Brahmani river basin, India was carried 
out at Jaraikela gauging station using the SWAT model. 
Sensitivity and uncertainty in streamflow were evaluated 
using the SUFI-2 algorithm of SWAT-CUP model.

2. MATERIALS AND METHODS

Study Area 

Jaraikela catchment under Brahmani river basin lies 
between 83°30' to 85°40'E longitude and 21°90' to 23°30'N 
latitude (Fig. 1). Jaraikela is a small catchment of Brahmani 

2basin having a drainage area of 8995 km . The majority of 
the catchment area is present in Jharkhand and only few 
portions are present in Odisha. Cultivable land area is 
dominant among other land uses. Major crops grown in this 
catchment are rice, groundnut, sugarcane, millet, and vegetables. 
The average annual precipitation of the catchment is 1320 
mm. The maximum temperature is recorded in the month of 

0May i.e. 48 C, whereas the minimum temperature is 
0experienced during the month of December i.e. 4 C.

Data Used

SWAT needs various field data to set-up the model for 
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Table: 1 
Sources of input data

Data Source

Soil The soil map obtained from the harmonized world soil database (HWSD) developed by the Food and Agriculture    
Organization of the United Nations (http://www.fao.org/geonetwork/srv/en/metadata.show%3Fid=14116). 

Land use The land use map collected from National Remote Sensing Centre (https://www.nrsc.gov.in/).
Rainfall and Temperature Daily rainfall and temperature (1980-2013) gridded (1°*1°) data were collected from the India Meteorological 

Department (IMD), Pune.
Discharge Daily discharge data (1980-2013) was collected from the Water Resources Information System of India (India-

WRIS), CWC. 
DEM The Digital Elevation Model (DEM) was collected from Shuttle Radar Topography Mission (SRTM 90) of USGS 

(http://srtm.csi.cgiar.org/). 

Fig. 1. Location of Jaraikela catchment
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simulating streamflow. Soil, land use, weather, discharge 
and elevation databases were collected from different 
sources/agencies and are listed in Table 1. The detailed soil 
and land use maps are shown in Fig’s 2 and 3, respectively. 

Land Use and Soil 

The land use/land cover (LU/LC) mainly affects the 
runoff and infiltration processess of the hydrological cycle 
(Singh et al., 2014). LU/LC map used in this study was 
obtained from the National Remote Sensing Centre 
(NRSC), Hyderabad, India in 1:250000 scale. The LU is 
mainly classified into four dominent classes as shown in 
Fig. 2. Out of the total catchment area agriculture occupies 
55.5%, followed by forest, built-up and water bodies in 
39.9, 3.2 and 1.4%, respctively. Soil type also plays a 
prominent role in governing the hydrological response of a 

catchment. Soil map of the study area was clipped from the 
harmonized world soil database (HWSD) developed by 
FAO. The major soil types of the catchment area are clay 
(59.1%) and loam (33.7%). The northen part of the study 
area is dominated by clay soil whereas sourthen part is 
larglely covered with loam soil. Besides these, sandy-loam 
and clay-loam soils are also persent in few patches of the 
catchment (Fig. 3).

SWAT Model

The SWAT model (Arnold et al., 1998) is a semi-
distributed hydrological model developed by the United 
States Department of Agriculture, Agricultural Research 
Service (USDA-ARS). It can simulate the streamflow, 
sediment and nutrients load reasonably from a large un-
gauged basin (Neitsch et al., 2011). It simulates runoff 

These uncertainties finally lead to considerable error in 
model simulation. Hence, it is very much necessary to 
quantify the degree of uncertainty associated with model 
results before drawing any conclusion and giving 
recommendation. Hence, researchers now prefer to use joint 
stochastic and deterministic model having a deterministic 
core within a stochastic frame. 

Out of all types of uncertainties, the primary problem in 
any hydrological modeling is the uncertainty in quantifying 
the model parameters. Further complications arise owing to 
the mismatch between model complexity and data 
availability to parameterize a model (Zhang et al., 2012; 
Song et al., 2015). Sensitivity analysis (SA) is one such 
method that helps to identify the parameters that have a 
strong impact on the model outputs, thereby influencing the 
efficiency of any model. In hydrological modeling, SA can 
be simply defined as the change in the output responses to 
the change in one or more model inputs or parameters. It is 
also worthwhile to mention that SA takes into account the 
effect of parameters as well as the uncertainties in model 
forcing (D'Agnese et al., 1999; Hill and Tiedeman, 2006). In 
a calibration process, the highly sensitive parameters are 
quickly and closely optimized than the less sensitive 
parameters. SA based on automatic calibration procedures 
are generally divided into two types, i.e. local and global 
search strategies (Sorooshian and Gupta, 1995). The local 
approaches deal with assessing the effect of parameters on 
the output by varying each parameter, one at a time around 
any base case, and global approaches assess the change in 
output by varying all the parameters simultaneously over 
the entire feasible range. The application of SA methods in 
hydrological modeling, although very limited (Blasone et 
al., 2007), has been gaining attention in the recent past.

Now, the Soil and Water Assessment Tool (SWAT) 
model is gaining popularity as a joint stochastic and 
deterministic model due to the development of SWAT-CUP 
model for both sensitivity and uncertainty analysis 
(Agrawal et al., 2011). Basically, SWAT is a physically 
based semi-distributed hydrologic model initially developed 
to simulate streamflow in an un-gauged basin (Arnold et al., 
1998). Nowadays, it is widely used for simulating stream-
flow, sediment yield, evapotranspiration, soil moisture, 
crop yield etc. at watershed scale (Zhang et al., 2010; Yesuf 
et al., 2016; Bhatt et al., 2016; Kumar et al., 2017). The 
impact of climate change on streamflow (Faramarzi et al., 
2013; Dahal et al., 2016) and estimation of blue and green 
water resources together (Faramarzi et al., 2009) can also be 
successfully analyzed using this model. Thus, it shows the 
wide applicability of the SWAT model in land, water and 
agricultural system simulation and management. 

Uncertainty is always associated with model results 
because of the difficulty in elimination of spurious data 
collected from several sources. However, this can be 
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minimized through intensive field investigation, adequate 
and efficient monitoring network, efficient parameter 
estimation tools and techniques (improved data collection), 
careful data handling, and efficient manufacturing and 
maintenance. A realistic assessment of the various sources 
of error is important for science-based decision making as 
well as to direct the research towards model structural 
improvements and uncertainty reduction. It is an accepted 
fact that hydrological model simulations should explicitly 
include an estimate of their associated uncertainty. 

Both sensitivity and uncertainty analysis are essential 
processes to reduce the uncertainties developed by the 
variations of model parameters and structure. Recently 
developed calibration and uncertainty analysis techniques 
for watershed models include: MCMC method (Vrugt et al., 
2003), GLUE method (Beven and Binley, 1992), ParaSol 
(Parameter Solution) method (Yang et al., 2008), and SUFI-
2 method (Abbaspour et al., 2004). These techniques 
(GLUE, ParaSol, SUFI-2 and MCMC) have been linked to 
SWAT model through SWAT-CUP (Abbaspour et al., 2007), 
and enable sensitivity and uncertainty analysis of model 
parameters as well as the structure (Rostamian et al., 2008). 
SWAT model calibration and uncertainty analysis using 
these techniques have been emphasized and confirmed 
through various studies worldwide, but also needs more 
investigations in different agro-climatic situations for 
enhancing the degree of confidence level. Abbaspour et al. 
(2004) and Yang et al. (2008) applied the SUFI-2 technique 
for evaluation of SWAT model. The SUFI-2 technique 
needs a minimum number of model simulations to attain a 
high-quality calibration and uncertainty results as compared 
to other techniques (Yang et al., 2008). In this study, stream-
flow simulation of Brahmani river basin, India was carried 
out at Jaraikela gauging station using the SWAT model. 
Sensitivity and uncertainty in streamflow were evaluated 
using the SUFI-2 algorithm of SWAT-CUP model.

2. MATERIALS AND METHODS

Study Area 

Jaraikela catchment under Brahmani river basin lies 
between 83°30' to 85°40'E longitude and 21°90' to 23°30'N 
latitude (Fig. 1). Jaraikela is a small catchment of Brahmani 

2basin having a drainage area of 8995 km . The majority of 
the catchment area is present in Jharkhand and only few 
portions are present in Odisha. Cultivable land area is 
dominant among other land uses. Major crops grown in this 
catchment are rice, groundnut, sugarcane, millet, and vegetables. 
The average annual precipitation of the catchment is 1320 
mm. The maximum temperature is recorded in the month of 

0May i.e. 48 C, whereas the minimum temperature is 
0experienced during the month of December i.e. 4 C.

Data Used

SWAT needs various field data to set-up the model for 
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simulating streamflow. Soil, land use, weather, discharge 
and elevation databases were collected from different 
sources/agencies and are listed in Table 1. The detailed soil 
and land use maps are shown in Fig’s 2 and 3, respectively. 

Land Use and Soil 

The land use/land cover (LU/LC) mainly affects the 
runoff and infiltration processess of the hydrological cycle 
(Singh et al., 2014). LU/LC map used in this study was 
obtained from the National Remote Sensing Centre 
(NRSC), Hyderabad, India in 1:250000 scale. The LU is 
mainly classified into four dominent classes as shown in 
Fig. 2. Out of the total catchment area agriculture occupies 
55.5%, followed by forest, built-up and water bodies in 
39.9, 3.2 and 1.4%, respctively. Soil type also plays a 
prominent role in governing the hydrological response of a 

catchment. Soil map of the study area was clipped from the 
harmonized world soil database (HWSD) developed by 
FAO. The major soil types of the catchment area are clay 
(59.1%) and loam (33.7%). The northen part of the study 
area is dominated by clay soil whereas sourthen part is 
larglely covered with loam soil. Besides these, sandy-loam 
and clay-loam soils are also persent in few patches of the 
catchment (Fig. 3).

SWAT Model

The SWAT model (Arnold et al., 1998) is a semi-
distributed hydrological model developed by the United 
States Department of Agriculture, Agricultural Research 
Service (USDA-ARS). It can simulate the streamflow, 
sediment and nutrients load reasonably from a large un-
gauged basin (Neitsch et al., 2011). It simulates runoff 

These uncertainties finally lead to considerable error in 
model simulation. Hence, it is very much necessary to 
quantify the degree of uncertainty associated with model 
results before drawing any conclusion and giving 
recommendation. Hence, researchers now prefer to use joint 
stochastic and deterministic model having a deterministic 
core within a stochastic frame. 

Out of all types of uncertainties, the primary problem in 
any hydrological modeling is the uncertainty in quantifying 
the model parameters. Further complications arise owing to 
the mismatch between model complexity and data 
availability to parameterize a model (Zhang et al., 2012; 
Song et al., 2015). Sensitivity analysis (SA) is one such 
method that helps to identify the parameters that have a 
strong impact on the model outputs, thereby influencing the 
efficiency of any model. In hydrological modeling, SA can 
be simply defined as the change in the output responses to 
the change in one or more model inputs or parameters. It is 
also worthwhile to mention that SA takes into account the 
effect of parameters as well as the uncertainties in model 
forcing (D'Agnese et al., 1999; Hill and Tiedeman, 2006). In 
a calibration process, the highly sensitive parameters are 
quickly and closely optimized than the less sensitive 
parameters. SA based on automatic calibration procedures 
are generally divided into two types, i.e. local and global 
search strategies (Sorooshian and Gupta, 1995). The local 
approaches deal with assessing the effect of parameters on 
the output by varying each parameter, one at a time around 
any base case, and global approaches assess the change in 
output by varying all the parameters simultaneously over 
the entire feasible range. The application of SA methods in 
hydrological modeling, although very limited (Blasone et 
al., 2007), has been gaining attention in the recent past.

Now, the Soil and Water Assessment Tool (SWAT) 
model is gaining popularity as a joint stochastic and 
deterministic model due to the development of SWAT-CUP 
model for both sensitivity and uncertainty analysis 
(Agrawal et al., 2011). Basically, SWAT is a physically 
based semi-distributed hydrologic model initially developed 
to simulate streamflow in an un-gauged basin (Arnold et al., 
1998). Nowadays, it is widely used for simulating stream-
flow, sediment yield, evapotranspiration, soil moisture, 
crop yield etc. at watershed scale (Zhang et al., 2010; Yesuf 
et al., 2016; Bhatt et al., 2016; Kumar et al., 2017). The 
impact of climate change on streamflow (Faramarzi et al., 
2013; Dahal et al., 2016) and estimation of blue and green 
water resources together (Faramarzi et al., 2009) can also be 
successfully analyzed using this model. Thus, it shows the 
wide applicability of the SWAT model in land, water and 
agricultural system simulation and management. 

Uncertainty is always associated with model results 
because of the difficulty in elimination of spurious data 
collected from several sources. However, this can be 
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P - factor = 
N

nyti

based on United States Department of Agriculture, Natural 
Resources Conservation Services-Curve Number Method, 
1972 (USDA, NRCS-CN). The water balance equation 
(Neitsch et al., 2011) has been used for simulating other 
hydrological components as shown in eq. 1.

Where, SW = Final soil water content (mm), SW = t o 

Initial soil water content on day i (mm), R = amount of day 

precipitation on day i (mm), Q  = Amount of surface runoff surf

on day i (mm), E = Amount of evapotranspiration on day i a,

(mm), W = Amount of water entering the vadose zone seep

from the soil profile on day i (mm), Q = Amount of return gw 

flow on day i (mm) and, t = time interval in day.

SUFI-2 Algorithm

SWAT-CUP is especially developed and coupled with 
the SWAT model by Abbaspour et al. (2007) for calibration, 
sensitivity and uncertainty analysis. Any calibration / 
uncertainty or sensitivity program can easily be linked to the 
SWAT model by using this generic interface. SWAT-CUP 
has various algorithms in one single platform namely, 
ParaSol, SUFI-2, GLUE, and MCMC. In this study, the 

SW = SW  + Σ    (R  – Q  – E  – W  – Q )     ...(1)t 0 day,i surf,i a,i seep,i gw,i

SUFI-2 algorithm was used to investigate sensitivity and 
uncertainty in streamflow simulation. The SUFI-2 
technique is based on a Bayesian framework that obtains the 
posterior parameters from priors as it provides a method of 
incorporating new information with prior assessments to 
calculate new values (posterior parameters) for the relative 
likelihood of events of interest (Haan, 1977). 

Several objective functions are used in SUFI-2 technique 
to reduce the non-uniqueness problem in the model 
parameterization (Duan et al., 2006). The average change in 
the objective functions with respect to the consequential 
changes of each parameter is referred as the relative 
sensitivities. It provides partial information about the 
sensitivity of the objective function and is based on linear 
approximation of the model parameters. Further, to estimate 
the level of significance between the datasets, a t-test is 
applied to identify the relative significance of each parameter. 
The t-test and the p-values were used to provide a measure 
and the significance of the sensitivity, respectively. The 
larger absolute value of t-test indicates that a parameter is 
more sensitive, and lower p-values close to zero show more 
significance.

In SUFI-2, the uncertainties from all sources are 
accounted in terms of 'parameter uncertainty' such as 
uncertainties in driving variables (e.g. rainfall), model 
conceptualization, parameterization, and measured data. 
Parameter uncertainty is quantified in terms of 95PPU 
band. The 95PPU is calculated at the 2.5% and 97.5% 
levels of the cumulative distribution of output variables. A 
'Latin hypercube' sampling technique (McKay et al., 1979) 
has been used to draw independent parameter sets. The 
strength of a calibration and uncertainty analysis is 
quantified by two additional statistics referred to as the P-
factor and R-factor.

Calibration and Validation

SWAT was calibrated and validated for monthly 
streamflow by comparing the observed streamflow at 
Jaraikela outlet. The model was run for a period of 24 years 
(1987–2010) by considering the first 3 years as the warm-up 
period. Streamflow data from 1990 to 2000 were used for 
calibration, whereas, the remaining 10 years of the dataset 
i.e. 2001–2010, were used for validating the model. After 
simulation, SWAT-CUP was used for model sensitivity, 
calibration and uncertainty analysis. Global SA was 
performed to distinguish the most sensitive parameters. The 
objective of the calibration is to optimize the model parameters. 
Nine parameters were selected for model calibration, 
sensitivity and uncertainty analysis of streamflow simulation. 
Recommended ranges of these nine parameters in terms of 
maximum and minimum values are shown in Table 2.

Performance Indices

Five parameters have been used for evaluation of 
model performance, namely coefficient of determination 

2(R ), NSE, Percentage BIAS (PBIAS), P-factor and R-
2factor. The coefficient of determination (R ), NSE and 

Percentage BIAS (PBIAS), are expressed mathematically 
in the following eqs. 2, 3 and 4, respectively.

              ...(2)

              ...(3)

              ...(4)

th thWhere, O  is the i observed data; S  the i  predicted / i i

simulated value; O  the mean of measured / observed data; S   i

the mean of predicted data and N the total number of 
simulation period.

The P-factor (percentage of measured data bracketed 
by the 95% prediction boundary) was used to quantify all 
the uncertainties associated with the SWAT model. The 
range of the P-factor varies from 0 to 1 with values close to 1 
indicating a very high model performance and efficiency, 
while the R-factor is the average width of the 95PPU band 
divided by the standard deviation of the observed variable 

and varies in the range 0-∞ (Abbaspour et al., 2007; Yang et 

al., 2008). The P-factor and the R-factor are expressed 
mathematically in the following way (Abbaspour et al., 
2007; Yang et al., 2008):

                            ...(5)

Where, ny the number of measured values bracketed ti  

by the 95PPU and N the total number of measured values.

              ...(6)

Where,      and      are the upper and lower boundaries 
of the 95 Uncertainty Band (UB), respectively and σ is obs 

the standard deviation of the observed data. 

3. RESULTS AND DISCUSSION

Model Calibration and Sensitivity Analysis (SA)

In this study, a rigorous calibration based on SA of 
model parameters was made following the SWAT-CUP 
documentation (Neitsch et al., 2005). A total number of 9 
SWAT parameters presented in Table 3, were selected for 
model calibration and uncertainty analysis based on 
previous studies and SWAT documentation (Neitsch et al., 
2002). In the early stage of calibration, global SA was 
conducted at the monthly time-step using Latin hypercube 
sampling. The first step in the calibration process is to 
adjust the input parameter values for matching the 
simulated results closely with the observed variables and 
to find out the most sensitive parameters influencing the 
observed variable more than other parameters. SA was 
performed with 1000 times run of the model and the 
results were examined. Dotty plots are the result of the 
model run with NSE as an objective function during 
calibration and are used to depict the distribution of 
sampling points as well as parameter sensitivity. The dotty 
plots conditioned in this study by SUFI-2 algorithm (Fig. 4) 
show that most of the sensitive parameters have NSE values 
more than the threshold value (0.5), during the monthly 
streamflow simulation.

Two indicators, t-stat and p-value (Abbaspour et al., 
2015) were used to measure the sensitivity and relative 
significance of each parameter. The relative ranking of the 
nine parameters according to their response to streamflow is 
presented in Table 3. The most sensitive parameter was 
found to be SCS-CN value for AMC II followed by base 
flow recession ALPHA factor and groundwater delay. SCS-
CN basically depends on catchment characteristics like land 
use, hydrological soil group and crop management 
practices. CN2 ranks first among the sensitive parameters 
which means that the catchment characteristics have more 
influence on runoff generation. The second sensitive 
parameter, base flow recession ALPHA factor represents 
groundwater flow response to change in recharge. Its value 
varies from 0.1-0.3 and 0.9-1.0 for catchment having a slow 

Fig. 2. Land use map of Jaraikela catchment

Fig. 3. Soil map of Jaraikela catchment

Table: 2 
Minimum and maximum value of calibration parameters by SUFI-2

S.No. Parameter                                           Description Minimum Maximum

  1 r_CN2.mgt Soil Conservation Service curve number for AMC II -0.05 0.05
  2 v_ALPHA_BF.gw Base flow recession alpha factor (days) 0 1
  3 a_GW_DELAY.gw Groundwater delay (day) 0 500
  4 a_GWQMN.gw Threshold water depth in the shallow aquifer required for return flow to occur (mm) 0 5000
  5 v_ESCO.hru Soil evaporation compensation factor 0.01 0.3

st -1  6 r_SOL_AWC(1).sol Available water capacity of 1  soil layer (mm mm ) 0.06 0.24
-1  7 v_CH_K2.rte Effective alluvium (mm hr ) 18.00 103.00

-1 st  8 r_SOL_K (1).sol Saturated hydraulic conductivity (mm hr ) of 1  layer -0.25 0.25
  9 v_SURLAG.bsn Surface runoff lag coefficient (day) 0.5 5

N.B. (i) a_ means the given value is added to the existing parameter value; (ii) r_ means the existing parameter value is multiplied by (1+a given value); (iii) v_ 
means the existing parameter value is to be replaced by the given value.

t
i=1

2R = 
t
i=1

t
i=1

2 2Σ    (S  - S)  Σ    (O  - O)i i

t
i=1

2[Σ    (S  - S) (O  - O)]i i

NSE = 1 -
N
i=1

2Σ    (O  - S )i i

N
i=1

2Σ    (O  - O)i

PBIAS = x 100
N
i=1Σ    (O  - S )i i

N
i=1Σ    O  i

R - factor = σobs

n
t =1i

m
ti,97.5%

m
ti,2.5%Σ    1

n - y    )(y

m
ti,97.5%

y ym
ti,2.5%
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P - factor = 
N

nyti

based on United States Department of Agriculture, Natural 
Resources Conservation Services-Curve Number Method, 
1972 (USDA, NRCS-CN). The water balance equation 
(Neitsch et al., 2011) has been used for simulating other 
hydrological components as shown in eq. 1.

Where, SW = Final soil water content (mm), SW = t o 

Initial soil water content on day i (mm), R = amount of day 

precipitation on day i (mm), Q  = Amount of surface runoff surf

on day i (mm), E = Amount of evapotranspiration on day i a,

(mm), W = Amount of water entering the vadose zone seep

from the soil profile on day i (mm), Q = Amount of return gw 

flow on day i (mm) and, t = time interval in day.

SUFI-2 Algorithm

SWAT-CUP is especially developed and coupled with 
the SWAT model by Abbaspour et al. (2007) for calibration, 
sensitivity and uncertainty analysis. Any calibration / 
uncertainty or sensitivity program can easily be linked to the 
SWAT model by using this generic interface. SWAT-CUP 
has various algorithms in one single platform namely, 
ParaSol, SUFI-2, GLUE, and MCMC. In this study, the 

SW = SW  + Σ    (R  – Q  – E  – W  – Q )     ...(1)t 0 day,i surf,i a,i seep,i gw,i

SUFI-2 algorithm was used to investigate sensitivity and 
uncertainty in streamflow simulation. The SUFI-2 
technique is based on a Bayesian framework that obtains the 
posterior parameters from priors as it provides a method of 
incorporating new information with prior assessments to 
calculate new values (posterior parameters) for the relative 
likelihood of events of interest (Haan, 1977). 

Several objective functions are used in SUFI-2 technique 
to reduce the non-uniqueness problem in the model 
parameterization (Duan et al., 2006). The average change in 
the objective functions with respect to the consequential 
changes of each parameter is referred as the relative 
sensitivities. It provides partial information about the 
sensitivity of the objective function and is based on linear 
approximation of the model parameters. Further, to estimate 
the level of significance between the datasets, a t-test is 
applied to identify the relative significance of each parameter. 
The t-test and the p-values were used to provide a measure 
and the significance of the sensitivity, respectively. The 
larger absolute value of t-test indicates that a parameter is 
more sensitive, and lower p-values close to zero show more 
significance.

In SUFI-2, the uncertainties from all sources are 
accounted in terms of 'parameter uncertainty' such as 
uncertainties in driving variables (e.g. rainfall), model 
conceptualization, parameterization, and measured data. 
Parameter uncertainty is quantified in terms of 95PPU 
band. The 95PPU is calculated at the 2.5% and 97.5% 
levels of the cumulative distribution of output variables. A 
'Latin hypercube' sampling technique (McKay et al., 1979) 
has been used to draw independent parameter sets. The 
strength of a calibration and uncertainty analysis is 
quantified by two additional statistics referred to as the P-
factor and R-factor.

Calibration and Validation

SWAT was calibrated and validated for monthly 
streamflow by comparing the observed streamflow at 
Jaraikela outlet. The model was run for a period of 24 years 
(1987–2010) by considering the first 3 years as the warm-up 
period. Streamflow data from 1990 to 2000 were used for 
calibration, whereas, the remaining 10 years of the dataset 
i.e. 2001–2010, were used for validating the model. After 
simulation, SWAT-CUP was used for model sensitivity, 
calibration and uncertainty analysis. Global SA was 
performed to distinguish the most sensitive parameters. The 
objective of the calibration is to optimize the model parameters. 
Nine parameters were selected for model calibration, 
sensitivity and uncertainty analysis of streamflow simulation. 
Recommended ranges of these nine parameters in terms of 
maximum and minimum values are shown in Table 2.

Performance Indices

Five parameters have been used for evaluation of 
model performance, namely coefficient of determination 

2(R ), NSE, Percentage BIAS (PBIAS), P-factor and R-
2factor. The coefficient of determination (R ), NSE and 

Percentage BIAS (PBIAS), are expressed mathematically 
in the following eqs. 2, 3 and 4, respectively.

              ...(2)

              ...(3)

              ...(4)

th thWhere, O  is the i observed data; S  the i  predicted / i i

simulated value; O  the mean of measured / observed data; S   i

the mean of predicted data and N the total number of 
simulation period.

The P-factor (percentage of measured data bracketed 
by the 95% prediction boundary) was used to quantify all 
the uncertainties associated with the SWAT model. The 
range of the P-factor varies from 0 to 1 with values close to 1 
indicating a very high model performance and efficiency, 
while the R-factor is the average width of the 95PPU band 
divided by the standard deviation of the observed variable 

and varies in the range 0-∞ (Abbaspour et al., 2007; Yang et 

al., 2008). The P-factor and the R-factor are expressed 
mathematically in the following way (Abbaspour et al., 
2007; Yang et al., 2008):

                            ...(5)

Where, ny the number of measured values bracketed ti  

by the 95PPU and N the total number of measured values.

              ...(6)

Where,      and      are the upper and lower boundaries 
of the 95 Uncertainty Band (UB), respectively and σ is obs 

the standard deviation of the observed data. 

3. RESULTS AND DISCUSSION

Model Calibration and Sensitivity Analysis (SA)

In this study, a rigorous calibration based on SA of 
model parameters was made following the SWAT-CUP 
documentation (Neitsch et al., 2005). A total number of 9 
SWAT parameters presented in Table 3, were selected for 
model calibration and uncertainty analysis based on 
previous studies and SWAT documentation (Neitsch et al., 
2002). In the early stage of calibration, global SA was 
conducted at the monthly time-step using Latin hypercube 
sampling. The first step in the calibration process is to 
adjust the input parameter values for matching the 
simulated results closely with the observed variables and 
to find out the most sensitive parameters influencing the 
observed variable more than other parameters. SA was 
performed with 1000 times run of the model and the 
results were examined. Dotty plots are the result of the 
model run with NSE as an objective function during 
calibration and are used to depict the distribution of 
sampling points as well as parameter sensitivity. The dotty 
plots conditioned in this study by SUFI-2 algorithm (Fig. 4) 
show that most of the sensitive parameters have NSE values 
more than the threshold value (0.5), during the monthly 
streamflow simulation.

Two indicators, t-stat and p-value (Abbaspour et al., 
2015) were used to measure the sensitivity and relative 
significance of each parameter. The relative ranking of the 
nine parameters according to their response to streamflow is 
presented in Table 3. The most sensitive parameter was 
found to be SCS-CN value for AMC II followed by base 
flow recession ALPHA factor and groundwater delay. SCS-
CN basically depends on catchment characteristics like land 
use, hydrological soil group and crop management 
practices. CN2 ranks first among the sensitive parameters 
which means that the catchment characteristics have more 
influence on runoff generation. The second sensitive 
parameter, base flow recession ALPHA factor represents 
groundwater flow response to change in recharge. Its value 
varies from 0.1-0.3 and 0.9-1.0 for catchment having a slow 

Fig. 2. Land use map of Jaraikela catchment

Fig. 3. Soil map of Jaraikela catchment

Table: 2 
Minimum and maximum value of calibration parameters by SUFI-2

S.No. Parameter                                           Description Minimum Maximum

  1 r_CN2.mgt Soil Conservation Service curve number for AMC II -0.05 0.05
  2 v_ALPHA_BF.gw Base flow recession alpha factor (days) 0 1
  3 a_GW_DELAY.gw Groundwater delay (day) 0 500
  4 a_GWQMN.gw Threshold water depth in the shallow aquifer required for return flow to occur (mm) 0 5000
  5 v_ESCO.hru Soil evaporation compensation factor 0.01 0.3

st -1  6 r_SOL_AWC(1).sol Available water capacity of 1  soil layer (mm mm ) 0.06 0.24
-1  7 v_CH_K2.rte Effective alluvium (mm hr ) 18.00 103.00

-1 st  8 r_SOL_K (1).sol Saturated hydraulic conductivity (mm hr ) of 1  layer -0.25 0.25
  9 v_SURLAG.bsn Surface runoff lag coefficient (day) 0.5 5

N.B. (i) a_ means the given value is added to the existing parameter value; (ii) r_ means the existing parameter value is multiplied by (1+a given value); (iii) v_ 
means the existing parameter value is to be replaced by the given value.

t
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0.96 during validation period, respectively (Table 4). The P-
factor and the R-factor values are within the desired range 
during both calibration and validation period which 
suggests that the parameter uncertainties are acceptable 
during the entire simulation period.

Further, the simulated streamflow values in a monthly 
time step were plotted with the observed values with 95PPU 
band as shown in Fig’s 5 and 6. The results indicate that 
most of the observations are bracketed within the 95PPU 
band. However, some irregularities were observed during 
the peak flow simulation. The calibration results (Fig. 5) 
revealed that the observed peak values in years 1996, 1997 
and 1998, and during validation in 2001, 2007 and 2008 
were not falling under 95PPU band. The model is under 
predicting the peak flow in these periods, which indicates 
the drawback of SWAT model to simulate extreme events of 
the catchment. Otherwise, the overall performance of the 
model is satisfactory under parameter uncertainty.

and validation period from 2001 to 2010 as presented in 
Fig's 5 and 6, respectively. The performance indices obtained 
during the calibration and validation periods are listed in 

2Table 4. The NSE, R , and PBIAS values were observed as 
0.84, 0.85 and -0.08, respectively during calibration and 
0.71, 0.73 and -0.17, respectively during validation. This 
indicates that model simulation results are quite satisfactory.

Further, the simulated streamflow was compared with 
observed flow using scatter plots. Scatter plot of simulated 
versus observed streamflow (Fig’s 7 and 8) illustrates that 
the simulated streamflow maintains a balance around the 
1:1 line during both calibration and validation periods. This 
indicates that the streamflow simulated by the model is at 
proximity of the observed values. However, Fig's 7 and 8 
also depict an over prediction of streamflow by the model 
during the low flow periods. This shows the limitation of 
SWAT model in simulating the base flow component of the 
catchment.

Parameter uncertainty in streamflow simulation is 
quantified by P- and R-factors during calibration and 
validation periods. The values of P- and R-factors were 
obtained to be 0.79 and 0.92 during calibration and 0.89 and 

Fig. 4. Dotty plots with objective function of NSE against each aggregate SWAT parameters during calibration period

Table: 3 
Best fitted, t-stat and p-value of sensitive calibration parameters by SUFI-2

S.No. Parameter                                  Description Fitted Value t-stat p-value

  1 r_CN2.mgt Soil Conservation Service curve number for AMC II 0.025 2.86 0
  2 v_ALPHA_BF.gw Base flow recession alpha factor (days) 0.40 1.29 0.12
  3 a_GW_DELAY.gw Groundwater delay (day) 280 1.05 0.21
  4 a_GWQMN.gw Threshold water depth in the shallow aquifer required 2600 -0.32 0.52

for return flow to occur (mm)
  5 v_ESCO.hru Soil evaporation compensation factor 0.15 -0.17 0.59

st -1  6 r_SOL_AWC(1).sol Available water capacity of 1  soil layer (mm mm ) 0.13 1.50 0.11
-1  7 v_CH_K2.rte Effective alluvium (mm hr ) 18.29 -1.476 0.142

-1 st  8 r_SOL_K (1).sol Saturated hydraulic conductivity (mm hr ) 1  soil layer 0.15 0.028 0.98
  9 v_SURLAG.bsn Surface runoff lag coefficient (day) 3 0.182 0.855

Fig. 5. Time series plot of simulated vs observed streamflow with
            95PPU band during calibration

Fig. 6. Time series plot of simulated vs observed streamflow with 
            95PPU band during validation

Table: 4 
Summary statistics of model performance 

Indices Calibration Validation
2R 0.85 0.73

NSE 0.84 0.71
PBIAS -0.08 -0.17
P-factor 0.79 0.89
R-factor 0.92 0.86

Fig. 8. Scatter plots of observed vs simulated streamflows by  
            SUFI-2 during validation

Fig. 7. Scatter plots of observed vs simulated streamflow by  
            SUFI-2 during calibration

and high response to recharge, respectively (Arnold et al., 
2001). In this case, the fitted value is 0.4, which indicates the 
Jaraikela catchment has a medium response to groundwater 
flow with respect to recharge.

Model Performance and Uncertainty Analysis (UA) 

In the present study, the simulated discharges were 
compared with the observed ones at the outlet of Jaraikela 
catchment during the calibration period from 1990 to 2000 
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0.96 during validation period, respectively (Table 4). The P-
factor and the R-factor values are within the desired range 
during both calibration and validation period which 
suggests that the parameter uncertainties are acceptable 
during the entire simulation period.

Further, the simulated streamflow values in a monthly 
time step were plotted with the observed values with 95PPU 
band as shown in Fig’s 5 and 6. The results indicate that 
most of the observations are bracketed within the 95PPU 
band. However, some irregularities were observed during 
the peak flow simulation. The calibration results (Fig. 5) 
revealed that the observed peak values in years 1996, 1997 
and 1998, and during validation in 2001, 2007 and 2008 
were not falling under 95PPU band. The model is under 
predicting the peak flow in these periods, which indicates 
the drawback of SWAT model to simulate extreme events of 
the catchment. Otherwise, the overall performance of the 
model is satisfactory under parameter uncertainty.

and validation period from 2001 to 2010 as presented in 
Fig's 5 and 6, respectively. The performance indices obtained 
during the calibration and validation periods are listed in 

2Table 4. The NSE, R , and PBIAS values were observed as 
0.84, 0.85 and -0.08, respectively during calibration and 
0.71, 0.73 and -0.17, respectively during validation. This 
indicates that model simulation results are quite satisfactory.

Further, the simulated streamflow was compared with 
observed flow using scatter plots. Scatter plot of simulated 
versus observed streamflow (Fig’s 7 and 8) illustrates that 
the simulated streamflow maintains a balance around the 
1:1 line during both calibration and validation periods. This 
indicates that the streamflow simulated by the model is at 
proximity of the observed values. However, Fig's 7 and 8 
also depict an over prediction of streamflow by the model 
during the low flow periods. This shows the limitation of 
SWAT model in simulating the base flow component of the 
catchment.

Parameter uncertainty in streamflow simulation is 
quantified by P- and R-factors during calibration and 
validation periods. The values of P- and R-factors were 
obtained to be 0.79 and 0.92 during calibration and 0.89 and 

Fig. 4. Dotty plots with objective function of NSE against each aggregate SWAT parameters during calibration period

Table: 3 
Best fitted, t-stat and p-value of sensitive calibration parameters by SUFI-2

S.No. Parameter                                  Description Fitted Value t-stat p-value

  1 r_CN2.mgt Soil Conservation Service curve number for AMC II 0.025 2.86 0
  2 v_ALPHA_BF.gw Base flow recession alpha factor (days) 0.40 1.29 0.12
  3 a_GW_DELAY.gw Groundwater delay (day) 280 1.05 0.21
  4 a_GWQMN.gw Threshold water depth in the shallow aquifer required 2600 -0.32 0.52

for return flow to occur (mm)
  5 v_ESCO.hru Soil evaporation compensation factor 0.15 -0.17 0.59

st -1  6 r_SOL_AWC(1).sol Available water capacity of 1  soil layer (mm mm ) 0.13 1.50 0.11
-1  7 v_CH_K2.rte Effective alluvium (mm hr ) 18.29 -1.476 0.142

-1 st  8 r_SOL_K (1).sol Saturated hydraulic conductivity (mm hr ) 1  soil layer 0.15 0.028 0.98
  9 v_SURLAG.bsn Surface runoff lag coefficient (day) 3 0.182 0.855

Fig. 5. Time series plot of simulated vs observed streamflow with
            95PPU band during calibration

Fig. 6. Time series plot of simulated vs observed streamflow with 
            95PPU band during validation

Table: 4 
Summary statistics of model performance 

Indices Calibration Validation
2R 0.85 0.73

NSE 0.84 0.71
PBIAS -0.08 -0.17
P-factor 0.79 0.89
R-factor 0.92 0.86

Fig. 8. Scatter plots of observed vs simulated streamflows by  
            SUFI-2 during validation

Fig. 7. Scatter plots of observed vs simulated streamflow by  
            SUFI-2 during calibration

and high response to recharge, respectively (Arnold et al., 
2001). In this case, the fitted value is 0.4, which indicates the 
Jaraikela catchment has a medium response to groundwater 
flow with respect to recharge.

Model Performance and Uncertainty Analysis (UA) 

In the present study, the simulated discharges were 
compared with the observed ones at the outlet of Jaraikela 
catchment during the calibration period from 1990 to 2000 

Jagadish Padhiary et al. / Indian J. Soil Cons., 47(2): 111-118, 2019 Jagadish Padhiary et al. / Indian J. Soil Cons., 47(2): 111-118, 2019116 117



4. CONCLUSIONS

The present study demonstrates the application of 
SWAT model in Jaraikela catchment of Brahmani river 
basin, India for simulating streamflow, identification of the 
most sensitive parameters and estimation of model parameters 
uncertainty using SUFI-2 algorithm. Identification of 
sensitive parameters and their ranking was done during the 
pre-calibration uncertainty analysis process. The results 
indicate that nine parameters were most sensitive and had a 
great impact on streamflow. Soil conservation service curve 
number for AMC II factor was identified as the most 
sensitive parameter among all other streamflow parameters. 
The model performance during streamflow calibration by 

2SUFI-2 was found to be excellent with NSE, R  and PBIAS 
values of 0.84, 0.85 and -0.08, respectively for the monthly 
streamflow simulation. During validation, the model 
performance was reasonably acceptable as indicated by the 

2NSE, R  and PBIAS values of 0.71, 0.73 and -0.17, 
respectively. The P and R factor values to the tune of 0.79 
and 0.92 during calibration, and 0.89 and 0.86 during the 
validation period, respectively indicate that the model 
performance was quite satisfactory under the parameter 
uncertainty. Basing upon the model simulation results, it 
may be inferred that the SWAT model can be successfully 
used for streamflow simulation under parameter uncertainty 
in an un-gauged watershed.
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