
ABSTRACT

The soil and water assessment tool (SWAT) was employed to evaluate hydrological 
fluxes in the Subarnarekha river basin, a coastal tropical region in India. The study 
utilized a spatially explicit approach, dividing the area into discrete sub-basins (166 
units) and subdividing them into hydrologic response units (HRUs) 1335 units, based 
on exclusive combinations of slope, land use, and soil combinations. With an area of 

226105 km  and surface elevations ranging from 0 to 1172 m above mean sea level 
(amsl), the basin predominantly features less than 8% slope (81.43% area of total basin 
area). The soil composition varied between loamy, clay loam, and clay. The SWAT 
model underwent calibration (2000-2007) and validation (2008-2012) using observed 
monthly average river discharge data from four gauging locations on the Subarnarekha 
and Budhabalanga hydrologic reaches. The sequential uncertainty fitting 2 (SUFI-2) 
framework with 22 parameters yielded model efficiencies (NSE) greater than 0.5 for 
all gauging locations in both periods. Sensitivity analysis identified the curve number 
(R_CN2.mgt) as the most sensitive parameter among the 22. The runoff and sediment 
yield data for each sub-basin were normalized to fit into a scale of 0 to 1. An equal 
weightage of 0.50 was assigned to both the parameter runoff and sediment yield to 
identify the hotpots area in the Subarnarekha river basin. The basin was divided into 
five vulnerability categories: slight, low, moderate, high, and extreme, covering 
63.27%, 26.40%, 5.58%, 2.21%, and 2.52% of the total basin area, respectively. Sub-
basins 38, 40, 126, 148, 142, and 125 exhibited high and extreme vulnerability, 
respectively. Approximately 10% of the total area fell under moderate to high to 
extreme vulnerability, emphasizing the need for priority for soil and water conserva-
tion measures. The developed methodology can be replicated  to delineate vulnerable 
zones in other river basins to prioritize natural resource management. 
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1  INTRODUCTION

River basins are critical ecosystems that support various 
forms of life, provide essential water resources for commu-
nities, and serve as conduits for sediment transport within 
the landscape. Thus, a clear concept of the dynamic relation-
ship between the sediment losses and runoff generated from 
the river basin is of paramount importance for sustainable 
watershed management, environmental conservation, and 
disaster risk reduction. The hydrological model, SWAT 
serves as a powerful modeling tool that enables the compre-
hensive analysis of runoff and sediment yield, offering 
valuable insights into the vulnerable areas identification 
within a river basin (Patil et al., 2019; Paddhiary et al., 2019; 
Sahoo et al., 2019).

|  This study focuses on one of the most important river 
basin of Odhisa i.e. the Subarnarekha river basin. The 
Subarnarekha is a coastal tropical river originating from the 
northeastern corner of Peninsular India, and the flood 
problem of this basin is mainly confined to lower alluvial 
reaches. Rainfed agriculture is the prime source of liveli-
hood in this flood prone river basin. During monsoon season, 
the river becomes a menace in its flat alluvial topography, 
located at the lower reaches close to the sea. In the hierarchy 
of the sub-basins that contribute more runoff to the main-
stream flows, it is essential to identify those vulnerable 
areas. These areas need prioritization for soil and water 
conservation measures as best management practices (BMPs). 
SWAT helps in the efficient identification and categoriza-
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FIGURE 2   Area covered under different elevation zone for 
the study area, Subarnarekha basin

FIGURE 1  Location map of the study area (Subarnarekha river basin) (Mandal et al., 2021)

soil profile depth, moderately shallow to deep (>50 cm) soil 
covers 86.06 % of the area followed by very shallow (10-25 
cm) soil which occupies 12.25% of the area. The general 
data regarding the soils of the basin comprises sandy clay 
loam, loam, clay, and silty clay loam. Very severe soil 
erosion affects only 1.4% of the area (CWC-NRSC, 2014). 
The slope direction is from northwest to southeast, and 
almost 81.44% of the area has slopes within 0 to 8%. The 
altitude of the study area varies between 0 to 1172 m amsl. 
The area covered under different elevation zones like, 0-60 
m (20.71%), 61-135 m (15.90%), 135-215 m (14.02%), 216-
287 m (17.64%), 288-369 m (10.35%), 370-465 m (6.22%), 
465-565 m (5%), 566-663 m (6.35%), 664-796 m (2.31%), 
and 797-1172 m (1.50%) of the basin shown in Fig. 2. The 
area is a hotspot in terms of mineral ore deposits of iron and 
bauxite and the richest in terms of coal reserves. The south-
west monsoon mainly influences the basin, which onset 
during June preceding a long dry spell and extends upto Oct. 
Rainfall exhibits significant variation both annual and 
seasonal. The 34 yrs (1972-2005) average annual rainfall is 
1444.53 mm according to the 0.5° grid data and 1385.75 
mm for the yrs 1971-2004 according to the 1° grid data 
(CWC-NRSC, 2014). The rainfall distribution shows higher 
rainfall as we move from the upper part to the lower part of 
the basin, and of the total rainfall received, losses due to 
evapotranspiration account for 57%, while infiltration accounts 
for 15% (CWC-NRSC, 2014). The region experiences a 
tropical climate featuring hot summers and mild winters, 
delineated by three distinct seasons: winter, summer, and 
monsoon. Mean monthly temperatures fluctuate between 
40.5°C (in May) and 9°C (in Dec). The maximum recorded 

temperature is 47.2°C, and the minimum is 2.8°C. The 
annual average maximum and minimum temperatures are 
32.4 to 18°C, respectively. The predominant portion of the 
basin falls within the hot sub-humid eco-region character-
ized by red and lateritic soil zones. The downstream reaches 
of the basin near the coastal belt fall under a hot sub-humid 
to semi-arid eco-region with coastal alluvium-derived soils. 
Groundwater table fluctuation is observed in the range of 
0.11 m to 8.20 m (1990 to 2015 data).

2.2 Hydrological Model, SWAT

SWAT model is one of the most commonly used hydrologi-
cal models for a wide array of watershed / environmental 
problems. It is a public domain model supported by the 
United States Department of Agriculture (USDA) and 
efficiently simulates physical processes associated with 
water flow, sediment transport, crop growth, and nutrient 
cycling (Shi et al., 2013). It has a wide array of applications 
in watersheds / river basins of varying sizes and earned 
undisputed popularity among global communities (Schuol 
and Abbaspour, 2006; Yang et al., 2008; Arnold et al., 2012; 
Adhikari et al., 2019; Dash et al., 2021; Mandal et al., 
2021). The SWAT can be utilized to assess the vulnerable 
area identification under present as well as projected climate 
scenarios of river basins (Dash et al., 2021). Moreover, the 
SWAT-CUP module with SUFI-2 algorithm module has 
been found to have wide applications for calibration and 
validation utilizing multi-site observation data (Adhikari et 
al., 2019; Dash et al., 2021; Mandal et al., 2021). 

To reconcile differences between topographic and 
hydrographic data, streams digitized from the Google Earth 
interface were utilized to imprint streams derived from the 
DEM data (ASTER DEM), ensuring alignment between the 
datasets. A total of 166 sub-watersheds were discretized 
(Fig. 1). In association with GLC 2000 land-use database 
with 16 land use classifications (Fig. 3; Table 1), ICAR-
National Bureau of Soil Survey and Land Use Planning 
(NBSS& LUP) soil layer dataset (Fig. 4), and slope classes 
as per soil water conservation measures (Fig. 5), the basin 
sub-spaces were further discretised into homogeneous sub-
units i.e. hydrologic response units (HRUs). A total of 1,335 
HRUs were generated by applying threshold values for land 
use (<15%), soil type (<10%), and slope class (<5%). The 
agricultural scenarios were introduced in the model by 
explicitly specifying crop information.

2.3  |  Database

Datasets corresponding to weather parameters, topography, 
soil, and land use/land cover (LU/LC) form the input for 
SWAT.  Global land cover 2000 (Hartley et al., 2006) was 
utilized as the land use map (1:250,000) as input to the 
SWAT model. The soil map layer at a scale of 1:250,000, 
along with its corresponding database, was acquired from 
the ICAR-NBSS&LUP located in Nagpur, India. The 

  |  

tion of watersheds into critical areas for the prioritization of 
soil conservation measures (Khalkho et al., 2020).  

As anthropogenic activities continue to alter land use, 
vegetation cover, and climate patterns, the need for precise, 
data-driven assessments of river basin vulnerability becomes 
increasingly urgent. Identifying areas prone to erosion, 
flash floods, and sediment transport is a crucial step in 
developing effective strategies for land and water resource 
management and mitigating the environmental impacts of 
sediment deposition in downstream ecosystems. In the 
present study, the river basin vulnerability has been assessed 
using the SWAT model which was employed to simulate 
runoff, estimate sediment yield, and pinpoint areas within 
the basin that are at the greatest risk. Two important 
hydrological components, runoff and sediment yield, have 
been considered to identify the vulnerable area. Equal 
weight was assigned for both parameters to get vulnerable 
sub-basins or areas, as outlined by Dash et al., 2021. The 
information garnered from this analysis can serve as the 
foundation for informed decision-making and sustainable 
resource management practices. In doing so, we aim to 
contribute to the preservation and sustainable utilization of 
river basins, ensuring the unaltered fresh water supply and 
protection of the downstream environments.

2 MATERIALS AND METHODS

2.1  |  

The Subarnarekha basin (Fig. 1) is a long sausage-shaped 
basin located in the north-eastern corner of the Peninsular 

  |  

Study Area

region (Mandal et al., 2021). Geographically it is bounded 
by the Chhotanagpur plateau to its north and west. On the 
south, it shares its boundary with the Baitarani river basin 
while the Bay of Bengal lies to the southeast. The Kasai 
valley of Kangsabati river basin lies to the east. The 
Subernarekha (448.36 km) and Burhabalang (198.62 km) 
are the two major river systems flowing in the north-south 
direction which drains into the Bay of Bengal. The Jamira 
and Panchpara streams in-between the two main rivers are 
also drained into the Bay of Bengal. The basin also has a 
coastal navigation canal moving in the west-east direction. 
It lies between latitude 21°18′37″N to 23°33′N and longitude 

285°8′14″E to 87°30′44″E encompassing almost 26105 km . 

The basin comprises two primary topographical 
regions: the northern plateau, encompassing Purulia district 
in West Bengal, and Ranchi and Singhbhum districts in 
Jharkhand, and the coastal plains. Part of the Mayurbhanj 
district of Odisha lying in this region, is hilly and has a major 
land use as forest. The coastal plain includes parts of 
Balasore district in Odisha and Purba Medinipur and 
Pashchim Medinipur districts of West Bengal. Based on the 

HIGHLIGHTS

l SWAT model successfully employed for evaluating hydro-
logical fluxes of Subarnarekha basin.

l The curve number was the most sensitive parameter.
l 10% Subarnarekha basin area was classified as extremely 

vulnerable & required immediate soil conservation measures.
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FIGURE 2   Area covered under different elevation zone for 
the study area, Subarnarekha basin

FIGURE 1  Location map of the study area (Subarnarekha river basin) (Mandal et al., 2021)
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2.4 Model Calibration, Validation, and Sensitivity 

Analysis

SUFI-2 algorithm within the SWAT-CUP auto-calibration 
tool was utilized for calibration, validation, and sensitivity 
analysis (Abbaspour et al., 2004; Abbaspour et al., 2007; 
Mandal et al., 2021). The mean monthly stream flow rates 
from the four gauging stations, viz., (a) Govindapur, (b) 
Ghatsila, (c) Adityapur, and (d) Jamshedpur were used for 
calibrating the model (Fig. 1). The first gauging site is located 
on the Budhabalanga river stream while the next three 
stations are positioned along the main river course of 
Subarnarekha. The flow rate was categorically divided into 
two groups based on the time period. The model was 
calibrated with the flow rate dataset received during 2000-
2007 while data obtained during 2008-2012 was used for 
validation. For segregating the daily discharge values from 
the base flow component, the protocol outlined by Lim et al. 
(2005) was used. Further, the model calibration and validation 
were done by aggregating these daily discharge values to 
monthly discharge. Model calibration was done using 22 
parameters, which were chosen by method outlined by 
Mandal et al. (2021).

SUFI-2 algorithm (Schuol and Abbaspour, 2006), a 
multi-site global search procedure was used for calibration. 
Quantification of the measurement uncertainty is done by 
the SUFI-2 algorithm by using the following parameters. 
The first parameter is the “p-factor” which is the percentage 
of measured data bracketed by the 95% prediction uncer-
tainty (PPU) with the aid of latin hypercube sampling (LHS) 
the 2.5% and 97.5% levels of the cumulative distribution of 
an output variable is obtained based on which 95 PPU is 
calculated. The second parameter is the R-factor, which is a 
measure of the mean width of 95 PPU upon the standard 
deviation of the measurements (Abbaspour et al., 2007; Al-
Mukhtar et al., 2014). The objective of the calibration 
scheme (SUFI-2) was the concomitant reduction in the R-
factor and enhancement in the p-factor. Three optimization 
criteria were used to get the optimum solution, i.e., coeffi-

2cient of determination (R ), a modified efficiency criterion ϕ 
2(bR ), and the nash-sutcliffe efficiency (NSE). To identify 

the global sensitivity of the parameter, a t-test was applied 
with a hypothesis that the higher t-value and lower p-value 
indicated higher sensitivity of the parameters to the 
modeled objective function(s).

2.5  |  Model Performance

The performance of any hydrological model like SWAT 
needs to be tested before application. For evaluating the 
performance of the model setup, including parameter 
optimization for further application of the model, the 
protocol given by Moriasi et al. (2007) was followed. The 
observed and model simulated flow rates were used for 
evaluation of the model performance. Three statistical 

  |  indicators, i.e. NSE (Nash et al., 1970), coefficient of 
2determination (R ), and percent bias (PBIAS), were utilized 

for the same as per the following equations.

...(1)

...(2)

...(3)

Where, n is the number of measured data, P  and i

the predicted data at time i and the mean of the predicted 
data, respectively, while O and O’ are measured data at time i 

i and the mean of the measured data, respectively. The 
2values of NSE indicator lie between -¥  and 1, while the R  

values range from -1 to 1.  A more positive value towards 1 
for both indicators suggests a better model performance and 
concurrence between the observed and predicted values 
(Mandal et al., 2021). The PBIAS values estimate the model 
bias and a positive value is associated with the underestima-
tion of bias while overestimation is indicated by a negative 
value (Abbaspour et al., 2007; Mandal et al., 2021).

2.6 Identification of Vulnerable Sub-basins 

Identifying vulnerable sub-basins within a larger river basin 
is a critical step in watershed management and environmen-
tal conservation. Vulnerable sub-basins are areas at higher 
risk of experiencing issues related to runoff, erosion, sediment 
transport, or other hydrological and environmental chal-
lenges. The identification of erosion-susceptible areas based 
on the quantum of runoff and sediment load generated is 
primarily required for designing efficient soil and water 
conservation measures. The entire study area was catego-
rized into different zones based on the sediment yield and 
runoff simulated by the model at each sub-basin level. The 
different zones formed were assigned a vulnerability index 
by giving equal weightage to both runoff and sediment load. 
Following this, all sub-basins were categorized into five 
vulnerable classes: visually slight, low, moderate, high, and 
extreme, as shown in Table 2.

3 RESULTS AND DISCUSSION

3.1  |  Model Calibration, Validation, and Sensitivity 

Analysis

SUFI-2 algorithm inbuilt within the auto-calibration module 
SWAT-CUP was used for the calibration, validation, sensitiv-

P’  are 

  |  

  |  

TABLE  1   Land use classes of the Subarnarekha river basin

S.No. Land use classes % area cover

1 Paddy field 28.51
2 Cropland 27.02
3 Broadleaf deciduous forest 17.74
4 Tree ppen 12.36
5 Cropland / Other vegetation mosaic 7.68
6 Broadleaf evergreen forest 2.79
7 Shrub 1.96
8 Herbaceous 0.7
9 Urban 0.53

10 Water bodies 0.29
11 Needle leaf evergreen forest 0.22
12 Sparse vegetation 0.13
13 Bare area, consolidated 0.04
14 Needle leaf deciduous forest 0.01
15 Mixed forest 0.01
16 Bare area, sand 0.01

FIGURE 4   Soil texture classes map of the study area

FIGURE 5   Slope classes map of the study area

FIGURE 3   Land use classification map of the Subarnarekha 
river basin

advanced space borne thermal emission and reflection 
radiometer (ASTER) global digital elevation model (GDEM), 
featuring a spatial resolution of 30 m, was employed to 
extract elevation and slope data at the sub-watershed level. 
Additionally, gridded weather datasets, including daily 
precipitation (mm), relative humidity (%), wind speed (km 

-1hr ), and maximum and minimum temperatures (°C), were 
obtained from the global climate forecast system re-analysis 
dataset (CFSR). These datasets, available at 30 km spatial 
resolution, covered the period from 2000 to 2012 and were 
accessed from the website http://globalweather.tamu.edu. 
Within the study area, weather input for the SWAT model 
was based on data from 20 grid points.

River discharge data at a daily scale from 2000 to 2012 
was downloaded from the web distribution portal distrib-
uted and maintained jointly by the Central Water Commission 
(CWC) and the Indian Space Research Organization (ISRO), 
Govt. of India for the four gauging locations within the 
Subarnarekha river basin (Fig. 1). The developed SWAT 
model was calibrated using the observed river discharge rate 
data and subsequently validated.
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parameters, which were chosen by method outlined by 
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SUFI-2 algorithm (Schuol and Abbaspour, 2006), a 
multi-site global search procedure was used for calibration. 
Quantification of the measurement uncertainty is done by 
the SUFI-2 algorithm by using the following parameters. 
The first parameter is the “p-factor” which is the percentage 
of measured data bracketed by the 95% prediction uncer-
tainty (PPU) with the aid of latin hypercube sampling (LHS) 
the 2.5% and 97.5% levels of the cumulative distribution of 
an output variable is obtained based on which 95 PPU is 
calculated. The second parameter is the R-factor, which is a 
measure of the mean width of 95 PPU upon the standard 
deviation of the measurements (Abbaspour et al., 2007; Al-
Mukhtar et al., 2014). The objective of the calibration 
scheme (SUFI-2) was the concomitant reduction in the R-
factor and enhancement in the p-factor. Three optimization 
criteria were used to get the optimum solution, i.e., coeffi-

2cient of determination (R ), a modified efficiency criterion ϕ 
2(bR ), and the nash-sutcliffe efficiency (NSE). To identify 

the global sensitivity of the parameter, a t-test was applied 
with a hypothesis that the higher t-value and lower p-value 
indicated higher sensitivity of the parameters to the 
modeled objective function(s).

2.5  |  Model Performance

The performance of any hydrological model like SWAT 
needs to be tested before application. For evaluating the 
performance of the model setup, including parameter 
optimization for further application of the model, the 
protocol given by Moriasi et al. (2007) was followed. The 
observed and model simulated flow rates were used for 
evaluation of the model performance. Three statistical 

  |  indicators, i.e. NSE (Nash et al., 1970), coefficient of 
2determination (R ), and percent bias (PBIAS), were utilized 

for the same as per the following equations.

...(1)

...(2)

...(3)

Where, n is the number of measured data, P  and i

the predicted data at time i and the mean of the predicted 
data, respectively, while O and O’ are measured data at time i 

i and the mean of the measured data, respectively. The 
2values of NSE indicator lie between -¥  and 1, while the R  

values range from -1 to 1.  A more positive value towards 1 
for both indicators suggests a better model performance and 
concurrence between the observed and predicted values 
(Mandal et al., 2021). The PBIAS values estimate the model 
bias and a positive value is associated with the underestima-
tion of bias while overestimation is indicated by a negative 
value (Abbaspour et al., 2007; Mandal et al., 2021).

2.6 Identification of Vulnerable Sub-basins 

Identifying vulnerable sub-basins within a larger river basin 
is a critical step in watershed management and environmen-
tal conservation. Vulnerable sub-basins are areas at higher 
risk of experiencing issues related to runoff, erosion, sediment 
transport, or other hydrological and environmental chal-
lenges. The identification of erosion-susceptible areas based 
on the quantum of runoff and sediment load generated is 
primarily required for designing efficient soil and water 
conservation measures. The entire study area was catego-
rized into different zones based on the sediment yield and 
runoff simulated by the model at each sub-basin level. The 
different zones formed were assigned a vulnerability index 
by giving equal weightage to both runoff and sediment load. 
Following this, all sub-basins were categorized into five 
vulnerable classes: visually slight, low, moderate, high, and 
extreme, as shown in Table 2.

3 RESULTS AND DISCUSSION

3.1  |  Model Calibration, Validation, and Sensitivity 

Analysis

SUFI-2 algorithm inbuilt within the auto-calibration module 
SWAT-CUP was used for the calibration, validation, sensitiv-

P’  are 
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TABLE  1   Land use classes of the Subarnarekha river basin

S.No. Land use classes % area cover

1 Paddy field 28.51
2 Cropland 27.02
3 Broadleaf deciduous forest 17.74
4 Tree ppen 12.36
5 Cropland / Other vegetation mosaic 7.68
6 Broadleaf evergreen forest 2.79
7 Shrub 1.96
8 Herbaceous 0.7
9 Urban 0.53

10 Water bodies 0.29
11 Needle leaf evergreen forest 0.22
12 Sparse vegetation 0.13
13 Bare area, consolidated 0.04
14 Needle leaf deciduous forest 0.01
15 Mixed forest 0.01
16 Bare area, sand 0.01

FIGURE 4   Soil texture classes map of the study area

FIGURE 5   Slope classes map of the study area

FIGURE 3   Land use classification map of the Subarnarekha 
river basin

advanced space borne thermal emission and reflection 
radiometer (ASTER) global digital elevation model (GDEM), 
featuring a spatial resolution of 30 m, was employed to 
extract elevation and slope data at the sub-watershed level. 
Additionally, gridded weather datasets, including daily 
precipitation (mm), relative humidity (%), wind speed (km 

-1hr ), and maximum and minimum temperatures (°C), were 
obtained from the global climate forecast system re-analysis 
dataset (CFSR). These datasets, available at 30 km spatial 
resolution, covered the period from 2000 to 2012 and were 
accessed from the website http://globalweather.tamu.edu. 
Within the study area, weather input for the SWAT model 
was based on data from 20 grid points.

River discharge data at a daily scale from 2000 to 2012 
was downloaded from the web distribution portal distrib-
uted and maintained jointly by the Central Water Commission 
(CWC) and the Indian Space Research Organization (ISRO), 
Govt. of India for the four gauging locations within the 
Subarnarekha river basin (Fig. 1). The developed SWAT 
model was calibrated using the observed river discharge rate 
data and subsequently validated.
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four gauging locations are shown in Fig. 5 during calibra-
tion and validation periods. From Fig. 5, it was observed 
that the model underestimated stream flow for all the 
gauging locations compared to the observed data. The under 
estimation may be due to the fact that the majority of the 
basin area (81.40%) has a moderate slope of 0-8%. 
Additionally, the predominance of fragmented agricultural 
lands used for rice cultivation bounded by field bunds 
resulted in a significant reduction of runoff, consequently 
producing less runoff. 

A PBIAS for all the gauging sites predictions was 
within ±25% level, further substantiated the “goodness-of-
fit” between the simulated and observed discharge data 
(Moriasi et al., 2007; Mandal et al., 2021). R-factor values 
are much less than 1, and across all the gauging sites, it 
shows nominal variation during the calibration and validation 
period (Table 2), thus, indicating the superior performance 
of the model (Zhang et al., 2014; Uniyal et al., 2015; 
Mandal et al., 2021). During the calibration period, the p-
factor value varies very little (from 0.38 to 0.45) compared 
to the validation period (0.22 to 0.40), which indicates small 
parameter uncertainty associated with the monthly stream 
flow simulation uncertainty (Zhang et al., 2014; Uniyal et 
al., 2015). The consistently low p-factor values, averaging 
0.38 during the calibration period and 0.32 during the 
validation period, suggest that parameter uncertainty contributes 
relatively little to the overall uncertainty associated in the 
simulation process, as reported in various studies (Zhang et 
al., 2014; Yaduvanshi et al., 2017). It also suggests that the 
parameter bounds are smaller for both simulation periods. 
Overall, these results suggest varying degrees of model 
performance across the locations and time periods, with 
some locations showing better model fit and less bias 
compared to others but overall model performance is highly 
satisfactory.

3.2 Stream Flow and Sediment Yield

For conserving most precious natural resources like soil and 
water by implementing various soil and water conservation 
measures (agronomical and engineering or bio-engineering 
measures) or BMPs, the essential prerequisite is identifica-
tion and prioritization of the hotspot area (sub-basins). In 
the present study, it is assumed that the soil type, land use 
pattern as well as agricultural practices remained constant 

  |  

ity analysis and uncertainty determination (Abbaspour et 
al., 2004; Abbaspour et al., 2007; Mandal et al., 2021). The 
monthly aggregated direct runoff discharge values were 
used as observed data for both calibration and validation. 
Optimized parameter values from 1000 parameter combina-
tions (derived from 1000 simulations) obtained from LHS 
along with lower and upper limits and best fitting value of 
the parameters set. With the help of sensitivity analysis 22 
model parameters were chosen. In various watershed 
studies worldwide, 13 parameters of the selected 22 have 
been widely adopted and used (Arnold et al., 2012). In the 
context of Indian river basins, 10 parameters out of 22 
parameters have been predominantly employed in various 
studies (Mandal et al., 2021). It was arguably found that the 
curve number (R_CN2.mgt) is the most sensitive parameter 
of all the listed parameters, followed by deep aquifer 
percolation fraction (V_RCHRG_DP.gw), groundwater re-
evaporation coefficient (V_GW_REVAP.gw). This might 
be attributed to the mild slope in the study area (<8%), the 
richness of coarser fractions in the soil in the HRUs and the 
fragmented paddy fields bounded by field bunds.  

Table 3 indicates the error statistics obtained through a 
comparison between the observed and simulated discharge 
values for both the calibration period (2000-2007) and the 
validation period (2008-2012). The NSE value exceeding 
0.5, as suggested by Moriasi et al. (2007), indicates a 
satisfactory agreement between the monthly simulated flow 
rates and their observed counterparts at all gauging stations. 
Notably, the model performance is better during validation, 
compared to the calibration period, with higher NSE values, 
except for the Govindpur site. This discrepancy may be 
attributed to the relatively shorter validation period. It is 

2noteworthy that the NSE and R  values show close agree-
ment for each gauging site during both calibration and 
validation periods. The comparison between the observed 
(monthly scale) and model simulated stream flow for the 

TABLE  3   Accuracy assessment of the SWAT model during calibration and validation periods 

Site Calibration period (2000-2007) Validation period (2008-2012)
2 2NSE PBIAS R p-factor R-factor NSE PBIAS R p-factor R-factor

Jamshedpur 0.69 3.9 0.71 0.38 0.63 0.78 9.3 0.80 0.35 0.48
Adityapur 0.53 18.1 0.55 0.36 0.44 0.63 -4.8 0.65 0.22 0.45
Ghatsila 0.73 5.8 0.74 0.35 0.59 0.78 21.4 0.83 0.33 0.42
Govindpur 0.76 -2.5 0.78 0.45 0.66 0.59 -4.1 0.62 0.4 0.53

TABLE  2   Criteria for identifying vulnerable area

Vulnerability index Soil loss classes

<0.25 Slight
0.25-0.50 Low
0.50-0.75 Moderate
0.75-0.90 High
>0.90 Extreme 

FIGURE 6  Scatter plot of observed and simulated streamflow for the gauging location (a) Jamshedpur, (c) 
Adityapur, (e) Ghatsila, (g) Govindapur during calibration period (2000-2007) and (b), (d), (f), and 
(g) during validation period (2008-2012), respectively
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four gauging locations are shown in Fig. 5 during calibra-
tion and validation periods. From Fig. 5, it was observed 
that the model underestimated stream flow for all the 
gauging locations compared to the observed data. The under 
estimation may be due to the fact that the majority of the 
basin area (81.40%) has a moderate slope of 0-8%. 
Additionally, the predominance of fragmented agricultural 
lands used for rice cultivation bounded by field bunds 
resulted in a significant reduction of runoff, consequently 
producing less runoff. 

A PBIAS for all the gauging sites predictions was 
within ±25% level, further substantiated the “goodness-of-
fit” between the simulated and observed discharge data 
(Moriasi et al., 2007; Mandal et al., 2021). R-factor values 
are much less than 1, and across all the gauging sites, it 
shows nominal variation during the calibration and validation 
period (Table 2), thus, indicating the superior performance 
of the model (Zhang et al., 2014; Uniyal et al., 2015; 
Mandal et al., 2021). During the calibration period, the p-
factor value varies very little (from 0.38 to 0.45) compared 
to the validation period (0.22 to 0.40), which indicates small 
parameter uncertainty associated with the monthly stream 
flow simulation uncertainty (Zhang et al., 2014; Uniyal et 
al., 2015). The consistently low p-factor values, averaging 
0.38 during the calibration period and 0.32 during the 
validation period, suggest that parameter uncertainty contributes 
relatively little to the overall uncertainty associated in the 
simulation process, as reported in various studies (Zhang et 
al., 2014; Yaduvanshi et al., 2017). It also suggests that the 
parameter bounds are smaller for both simulation periods. 
Overall, these results suggest varying degrees of model 
performance across the locations and time periods, with 
some locations showing better model fit and less bias 
compared to others but overall model performance is highly 
satisfactory.

3.2 Stream Flow and Sediment Yield

For conserving most precious natural resources like soil and 
water by implementing various soil and water conservation 
measures (agronomical and engineering or bio-engineering 
measures) or BMPs, the essential prerequisite is identifica-
tion and prioritization of the hotspot area (sub-basins). In 
the present study, it is assumed that the soil type, land use 
pattern as well as agricultural practices remained constant 
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ity analysis and uncertainty determination (Abbaspour et 
al., 2004; Abbaspour et al., 2007; Mandal et al., 2021). The 
monthly aggregated direct runoff discharge values were 
used as observed data for both calibration and validation. 
Optimized parameter values from 1000 parameter combina-
tions (derived from 1000 simulations) obtained from LHS 
along with lower and upper limits and best fitting value of 
the parameters set. With the help of sensitivity analysis 22 
model parameters were chosen. In various watershed 
studies worldwide, 13 parameters of the selected 22 have 
been widely adopted and used (Arnold et al., 2012). In the 
context of Indian river basins, 10 parameters out of 22 
parameters have been predominantly employed in various 
studies (Mandal et al., 2021). It was arguably found that the 
curve number (R_CN2.mgt) is the most sensitive parameter 
of all the listed parameters, followed by deep aquifer 
percolation fraction (V_RCHRG_DP.gw), groundwater re-
evaporation coefficient (V_GW_REVAP.gw). This might 
be attributed to the mild slope in the study area (<8%), the 
richness of coarser fractions in the soil in the HRUs and the 
fragmented paddy fields bounded by field bunds.  

Table 3 indicates the error statistics obtained through a 
comparison between the observed and simulated discharge 
values for both the calibration period (2000-2007) and the 
validation period (2008-2012). The NSE value exceeding 
0.5, as suggested by Moriasi et al. (2007), indicates a 
satisfactory agreement between the monthly simulated flow 
rates and their observed counterparts at all gauging stations. 
Notably, the model performance is better during validation, 
compared to the calibration period, with higher NSE values, 
except for the Govindpur site. This discrepancy may be 
attributed to the relatively shorter validation period. It is 

2noteworthy that the NSE and R  values show close agree-
ment for each gauging site during both calibration and 
validation periods. The comparison between the observed 
(monthly scale) and model simulated stream flow for the 

TABLE  3   Accuracy assessment of the SWAT model during calibration and validation periods 

Site Calibration period (2000-2007) Validation period (2008-2012)
2 2NSE PBIAS R p-factor R-factor NSE PBIAS R p-factor R-factor

Jamshedpur 0.69 3.9 0.71 0.38 0.63 0.78 9.3 0.80 0.35 0.48
Adityapur 0.53 18.1 0.55 0.36 0.44 0.63 -4.8 0.65 0.22 0.45
Ghatsila 0.73 5.8 0.74 0.35 0.59 0.78 21.4 0.83 0.33 0.42
Govindpur 0.76 -2.5 0.78 0.45 0.66 0.59 -4.1 0.62 0.4 0.53

TABLE  2   Criteria for identifying vulnerable area

Vulnerability index Soil loss classes

<0.25 Slight
0.25-0.50 Low
0.50-0.75 Moderate
0.75-0.90 High
>0.90 Extreme 

FIGURE 6  Scatter plot of observed and simulated streamflow for the gauging location (a) Jamshedpur, (c) 
Adityapur, (e) Ghatsila, (g) Govindapur during calibration period (2000-2007) and (b), (d), (f), and 
(g) during validation period (2008-2012), respectively
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However, the situation was not true for all cases, as observed 
in the downstream south-eastern part of the basin where 

-1 -1 sediment yield was less than 10 t ha y (slight to low 
category classes). However, runoff classes belonged to the 
moderate to extreme category. 

3.3 Vulnerable Area Identification

Identification of the vulnerable area is dependent on various 
parameters. Here, two important parameters (surface runoff 
and sediment yield) were considered with equal weightage. 
The weighted sum overlay method was used for generating 
vulnerable area map of Subarnarekha river basin,  shown in 
Fig. 8. The vulnerable classes were calculated sub-basin-
wise. The vulnerability assessment of the sub-basins reveals 
distinct classes based on their susceptibility to environmen-
tal challenges. Among the identified categories, the majority 
of sub-basins fall into the "Slight" vulnerability class, compris-
ing 89 sub-basins, covering an extensive area of 16,519.02 
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during the period of analysis, with any variations attributed 
solely to changes in climatic input variables. 

The long-term average of sediment yield and runoff 
map of the Subarnarekha river basin is presented in Fig. 7. 

-1 -1The sediment yield (t ha y ) map was categorized into five 
-1 -1classes, i.e., 0-5, 5-10, 10-20, 20-40, and >40 t ha  y . The 

surface runoff map was also categorized into 5-classes, i.e., 
47-100, 100-150, 150-200, 200-300, and >300 mm. The 
same color code has been utilized for both the map in the 
line of vulnerability map. Table 4 represents the detailed 
statistics related to the area under different classes, along 
with the number of sub-basins under each class. The 
classification of the sub-basins under each category class is 
also shown in Fig. 7. From Fig. 7, one interesting observa-
tion is that, in most cases, the surface runoff and sediment 
yield category classes overlap. Notably, the downstream 
southwest side of the basin mainly experienced high to 
extreme categories of sediment yield and runoff (Fig. 7). 

throughout the calibration and validation phases validates 
the suitability of applying SWAT at the river basin scale, 
affirming its appropriateness for future applications. 
Uncertainty analysis suggests very little contribution of the 
parameter uncertainty to the overall output of the calibrated 
model. The observed and simulated discharge rate is within 
the 95 PPU band. Curve number (R_CN2.mgt) was found to 
be the most sensitive parameter during both calibration and 
validation periods. The vulnerable area identification map 
was classified into five categories: slight, low, moderate, 
high, and extreme, and the areas under various categories 
were 63.27, 26.40, 5.58, 2.21, and 2.52%, respectively. It 
was found that nearly 10% area of the total basin area 
belonged to the moderately to extremely vulnerable area 
class and needs a priority for soil and water conservation 
measures. The developed methodology may help to identify 
the vulnerable area of the basin and, based on land use and 
land cover and slope, BMPs like repairing existing field 
bunds, proposing field bunds, contour bunds, bench terraces, 
bio-engineering measures, check-dams for drainage line 
treatment etc. may be implemented by the various agencies. 
This strategy will ensure better utilization of the budget 
effectively to warrant proper management of natural 
resources for the benefit of the local community.
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2,sq km  constituting 63.28% of the total area. Following this, 
the "Low" vulnerability class encompasses 62 sub-basins, 

2with an area of 6,892.24 sq km , representing 26.40% of the 
overall area. Additionally, there are 9 sub-basins in the 

2"Moderate" vulnerability class, covering 1,457.71 sq km  
(5.58% of the total area). The "High" vulnerability class 

2includes three sub-basins, totalling 578.01 sq km  (2.21%). 
In comparison, both the "Extreme" vulnerability class and 
another category with three sub-basins each occupy 2.52% 

2of the total area, with areas measuring 658.47 km . A total of 
4.73% area (sub-basin number 38, 40,126, 125, 142, and 
148) is under the high to extreme vulnerable area category. 
These findings are also supported by the hilly topography 
(high slope) of the basin and Google Earth images (Fig. 8). 
This classification provides a comprehensive overview of 
the distribution of vulnerability classes across the sub-
basins in the study area. A similar kind of study was 
conducted by Dash et al., 2021 for the Brahmani river basin, 
where 5.38% of the area was under the high to extremely 
vulnerable category.

4  |  CONCLUSIONS

The SWAT model was developed for the Subarnarekha river 
basin of India. The developed model was successfully 
calibrated and validated by auto-calibration tool, SWAT-
CUP integration with SWAT model using SUFI-2 algo-
rithm, and the calibration and validation results were found 
satisfactory (NSE>0.5 for all gauging sites). The strong 
agreement between simulated and observed stream flow 

FIGURE 7   -1 -1Sub-basin wise (a) surface runoff in mm and (b) sediment yield in t ha y  map of Subarnarekha river basin

(a) (b)

TABLE  4   Sediment yield and surface runoff statistics for Subarnarekha river basin

-1 -1 -1 -1 2Sediment yield (t ha y ) No. of sub-basin Average sediment yield (t ha y ) Area (km ) % area

1-5 14 3.69 2262.35 8.67
5-10 41 7.82 7501.31 28.73
10-20 41 13.97 5717.19 21.90
20-40 41 27.76 5931.08 22.72
>40 29 70.3 4693.53 17.98
Runoff (mm)
<100 mm 18 77.75 5697.99 21.83
100-150 mm 30 124.95 5932.33 22.72
15-200 mm 46 171.09 7098.48 27.19
200-300 mm 47 240.89 4933.97 18.90
>300 mm 25 375.31 2442.69 9.36

FIGURE 8  Sub-basin wise vulnerability classes and Google Earth image of 2010 for the Subarnarekha river basin
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However, the situation was not true for all cases, as observed 
in the downstream south-eastern part of the basin where 

-1 -1 sediment yield was less than 10 t ha y (slight to low 
category classes). However, runoff classes belonged to the 
moderate to extreme category. 

3.3 Vulnerable Area Identification

Identification of the vulnerable area is dependent on various 
parameters. Here, two important parameters (surface runoff 
and sediment yield) were considered with equal weightage. 
The weighted sum overlay method was used for generating 
vulnerable area map of Subarnarekha river basin,  shown in 
Fig. 8. The vulnerable classes were calculated sub-basin-
wise. The vulnerability assessment of the sub-basins reveals 
distinct classes based on their susceptibility to environmen-
tal challenges. Among the identified categories, the majority 
of sub-basins fall into the "Slight" vulnerability class, compris-
ing 89 sub-basins, covering an extensive area of 16,519.02 
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parameter uncertainty to the overall output of the calibrated 
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FIGURE 7   -1 -1Sub-basin wise (a) surface runoff in mm and (b) sediment yield in t ha y  map of Subarnarekha river basin

(a) (b)

TABLE  4   Sediment yield and surface runoff statistics for Subarnarekha river basin

-1 -1 -1 -1 2Sediment yield (t ha y ) No. of sub-basin Average sediment yield (t ha y ) Area (km ) % area

1-5 14 3.69 2262.35 8.67
5-10 41 7.82 7501.31 28.73
10-20 41 13.97 5717.19 21.90
20-40 41 27.76 5931.08 22.72
>40 29 70.3 4693.53 17.98
Runoff (mm)
<100 mm 18 77.75 5697.99 21.83
100-150 mm 30 124.95 5932.33 22.72
15-200 mm 46 171.09 7098.48 27.19
200-300 mm 47 240.89 4933.97 18.90
>300 mm 25 375.31 2442.69 9.36

FIGURE 8  Sub-basin wise vulnerability classes and Google Earth image of 2010 for the Subarnarekha river basin
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