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The soil and water assessment tool (SWAT) is a widely accepted semi-distributed agro-
hydrological model. In the present study, the SWAT has been calibrated for the 
agriculture-dominated Kantamal catchment of Mahanadi river basin, Odisha, India, to 
simulate streamflow at the Kantamal gauging station. The model was run for 19 years 
from 2000 to 2018 to simulate monthly streamflow. In addition, the model has been 
calibrated for the period 2004 to 2012, considering the initial 4 years (2000-2003) as a 
warm-up period and validated for 6 years from 2013 to 2018. Uncertainty analysis was 
carried out using the SUFI-2 algorithm in SWAT-CUP. The sensitivity of the parame-
ters was determined using the t-stat and p-value. Fifteen distinguished parameters 
were selected for sensitivity analysis (SA). The performance of the model was 
evaluated satisfactorily on monthly time scale streamflow simulation using Nash-

2Sutcliffe Efficiency (NSE), coefficient of determination (R ), and percentage BIAS 
(PBIAS). The P- and R- factors were used to assess the degree of uncertainty. The 

2values of NSE, R , and PBIAS were found to be 0.91, 0.94, and -0.07 during the 
calibration period and 0.82, 0.87, and -0.16 during the validation period, respectively. 
The P- and R- factors values were 0.77 and 0.98 during calibration and 0.79 and 0.86 
during the validation period, respectively. The simulated streamflow is well fitted 
within the 95% prediction uncertainty (95PPU) band of the  SUFI-2 algorithm during 
the calibration and validation periods, indicating a satisfactory model performance 
under parameter uncertainty. Overall, it is depicted that the SWAT model can be 
successfully used for streamflow modeling and water resources assessment in 
agriculture-dominated catchments.
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1. INTRODUCTION

Water is the symbol of life, and freshwater, the most 
precious natural resource, accounts for the sustenance of life 
on the earth. Out of the vast water resources of the earth, 
only 0.5% is freshwater, and it is available for meeting the 
various needs of human beings (Padhiary et al., 2020). The 
quantity and quality of this finite resource are gradually 
depleting due to various anthropogenic activities like 
injudicious use in agriculture, domestic and industrial 
purposes (Pathan and Sil, 2019). Hence, conservation of the 
resource with respect to quantity and quality is one of the 
most important national and international concerns today. 

Out of total available freshwater, 70-80% is used in 
Agriculture. Overuse of freshwater for irrigation and 
blending of agrochemicals and fertilizers in agricultural 
fields and draining of industrial effluent to the water bodies 
etc., are creating threats for the scarce resource. So, proper 
management of water resources is imperative to meet the 
need of current and future demands (Ahmadi et al., 2020; 
Panigrahi et al., 1992). Assessment of the potential of water 
resources at basin or sub-basin scale may be a pre-requisite 
for using the resource in a planned manner. The natural 
system is very complex, and to overcome this, hydrologists 
use simulation models that are the simplified representation 
of a natural hydrologic system for assessing various compo-
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nents of the hydrological cycle on a watershed scale. 
Hydrological models starting from simple empirical models 
to more complex physically-based distributed models, have 
been evolved over the years to understand the different 
aspects of hydrology (Samadi et al., 2017). Although the 
natural hydrological processes are represented by simpli-
fied or complex mathematical equations in hydrological 
models, the final design is invariably only an approximation 
of the complex natural system. This is because the modeler 
combines existing knowledge of the physical processes 
with some conceptual representations of unknown princi-
ples underlying the modeled process. Therefore, applica-
tions of any model are associated with several kinds of 
uncertainties with respect to model structure, parameters, 
input data, and natural randomness. These uncertainties 
finally lead to a considerable error in the model simulation. 
It is necessary to quantify the degree of uncertainty associated 
with model results before drawing any conclusion and 
recommending it. Hence, using stochastic hydrological 
models or deterministic models having a deterministic core 
within a stochastic frame is becoming popular in hydrology.

Complex hydrological models use several parameters 
for different water cycle components that increase the 
possibility of model parameter uncertainty. Further complica-
tions arise owing to the mismatch between model complex-
ity and data availability to parameterize a model (Uniyal et 
al., 2015; Song et al., 2015). Parameters influencing the 
simulation of a hydrological process are generally selected 
and optimized using a suitable algorithm during the model 
calibration process. Also, various automatic calibration 
algorithms have been developed with respect to the hydrolog-
ical model development (Guse et al., 2019). Sensitivity 
analysis (SA) of calibration parameters is one method that 
helps identify those parameters having a strong impact on 
the model outputs, thereby influencing the model's efficiency.

The application of SA in hydrological modeling is 
gaining greater attention nowadays. SA is performed by 
studying the changes in model responses to the change in 
one or more model inputs or parameters. It is also worth 
mentioning that SA considers the effect of parameters and 
the uncertainties in model forcing (Padhiary et al., 2019). In 
a calibration process, higher sensitivity parameters are 
quickly and closely optimized than less sensitive ones. SA 
based on automatic calibration procedures is generally 
divided into two types, i.e., local and global search strate-
gies (Uniyal et al., 2015; Yesuf et al., 2016). The local 
approaches deal with assessing the effect of change in 
parameter value on model output by selecting one parame-
ter at a time. In contrast, the global approaches assess the 
change in model output by varying all the parameter values 
simultaneously over the entire feasible range. 

The SWAT model is gaining popularity as a joint 
stochastic and deterministic model due to the development 

of the SWAT Calibration and Uncertainty Procedures 
(SWAT-CUP) model for sensitivity and uncertainty analysis 
(Agrawal et al., 2011). SWAT is a physically-based semi-
distributed hydrologic model initially developed to simulate 
streamflow in an un-gauged basin (Arnold et al., 1998; 
Samadi et al., 2017). Nowadays, it is widely used for 
simulating streamflow, sediment yield, evapotranspiration, 
soil moisture, crop yield, etc., on the watershed scale (Yesuf 
et al., 2016; Bhatt et al., 2016; Zhang et al., 2019; Panda et 
al., 2021). Furthermore, the impact of climate change on 
streamflow (Ahmadi et al., 2020; Padhiary et al., 2020) and 
estimation of blue and green water resources together 
(Faramarzi et al., 2009) can also be successfully analyzed 
using this model. Thus, it shows the potential of the SWAT 
model and its wide applicability in the land, water, and 
agricultural system simulation and management.

Uncertainty is always associated with model outputs 
because of the difficulty of eliminating spurious data collected 
from several sources (Warusavitharana, 2020). However, 
this can be minimized through intensive field investigation, 
adequate and efficient monitoring network, efficient parameter 
estimation tools and techniques, careful data handling, and 
efficient manufacturing and maintenance (Afshar et al., 
2020). A realistic assessment of various sources of error is 
essential for science-based decision-making and directs the 
research towards model structural improvements and 
uncertainty minimization. Therefore, it is accepted that 
hydrological model simulations should explicitly include an 
estimate of their associated uncertainty. 

Generally, distributed hydrologic models comprise 
many unknown parameters, and the model's efficacy in 
simulating the hydrological processes depends heavily on 
the accurate estimation of these parameters through calibra-
tion (Choudhari et al., 2014; Vema and Sudheer, 2020). 
Both sensitivity and uncertainty analysis are essential 
processes to reduce the uncertainties developed by the 
model parameters and structure variations. Recently 
developed calibration and uncertainty analysis techniques 
for watershed models include Markov Chain Monte Carlo 
(MCMC) method, Generalized Likelihood Uncertainty 
Estimation (GLUE) method, Parameter Solution (ParaSol) 
method, and Sequential Uncertainty Fitting (SUFI-2) 
method (Abbaspour et al., 2004; Wu and Chen, 2015). 
These techniques (GLUE, Parasol, SUFI-2, and MCMC) 
have been linked to the SWAT model through SWAT-CUP 
and enable sensitivity and uncertainty analysis of model 
parameters and structure (Abbaspour et al., 2007). The 
calibration of the SWAT model and uncertainty analysis 
through these techniques is emphasized and confirmed by 
various studies worldwide and suggests more investigation 
in different agro-climatic situations to enhance confidence 
levels. Abbaspour et al. (2004) applied the SUFI-2 tech-
nique to evaluate the SWAT model. The SUFI-2 technique 
needs a minimum number of model simulations to attain 
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state of Odisha. It covers eight districts of Odisha, namely, 
Kalahandi, Bolangir, Nuapada, Kandhamal, Nabarangpur, 
Rayagada, Boudh, and Sonepur, comprising 49 revenue 
blocks and one district of the adjacent state Chhatisgarh, 
namely, Gariabandh. About 95% of the basin is in the state 
of Odisha, and the rest 5% area is in the Gariabandh district 
of Chhattisgarh (Fig. 1). Cultivable land is the predominant 
land use of the basin among various land uses. Major crops 
grown in this catchment are rice, pulses, cotton, millet, 
groundnut, sugarcane, and vegetables. The normal annual 
rainfall of the catchment is 1360 mm, out of which 1170 mm 
occurs during the monsoon season (June to September). The 
maximum temperature of the catchment ranges from 31-

o48 C, whereas the minimum temperature ranges from 6-
o23 C. Average relative humidity of the study area varies 

from 39% during summer to about 87% during the monsoon 
season. The temporal variability of the meteorological 
parameters is presented in Fig. 2.

high-quality calibration and uncertainty results compared to 
other techniques (Thavhana et al., 2018). In this study, the 
streamflow simulation in the middle reach of Mahanadi 
river basin, India, was carried out at Kantamal gauging 
station using the SWAT model. Sensitivity and uncertainty 
in streamflow were evaluated using the SUFI-2 algorithm of 
the SWAT-CUP model.

2. MATERIALS AND METHODS

Study Area 

The study was undertaken in the Kantamal catchment 
located at the middle reach of the Mahanadi river basin. The 

2catchment extends over 20,024 km , which is nearly 12.85% 
of the state's total geographical area. The catchment area lies 
between 82°02′11″ to 84°18′56″ East longitudes and 19°16′ 
7″ to 20°44′12″ North latitudes. The middle reach of the 
Mahanadi basin drained by two tributaries of Mahanadi viz., 
Tel and Ong river is the major rainfed area of the basin in the 

Fig. 2. Temporal variability of meteorological parameters in the catchment
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Data Requirement  

SWAT needs various field data to set up the model for 
simulating streamflow. Therefore, soil, land use, weather, 
discharge, and elevation databases were collected from 
different sources / agencies as listed in Table 1. The detailed 
soil and LU maps are illustrated in Fig's 3 and 4, respectively.

Land Use and Soil Type 

Land use / land cover (LU/LC) mainly affects the runoff 
and infiltration processes of the hydrological cycle (Tegegne 
et al., 2019). LU/LC map at 1:50000 scale used in this study 
was obtained from National Remote Sensing Centre (NRSC), 
Hyderabad, India, developed for 2011-12. The study area is 
divided into five LU/LC classes: water bodies, wasteland, 
forest, build-up, and agricultural land, as illustrated in Fig. 
3. Water bodies are found to cover only 1.96% area of the 
catchment. On the other hand, the agricultural land is the 
dominant land use of the catchment, and it covers half of the 
study area (50.11%) and is mostly spread in the central and 
northern parts of the catchment.

The forest land covers 37.52% of the catchment and 
spreads mostly in the eastern, south-eastern, and western 
regions. The built-up areas (1.2% of catchment area) and 
wastelands (9.21% of catchment area) are scattered sporadi-
cally throughout the catchment. Soil type also plays a 
prominent role in governing the hydrological response. The 
soil map of the study area was collected from the NBSS& 
LUP, Kolkata. The soil texture for the study area is repre-
sented by seven classes: clay, silty clay, clay loam, silty clay 
loam, sandy clay loam, loam, and sandy loam, as illustrated 
in Fig. 4. Clay loam soil covers about half of the catchment 
area (49.88%), followed by sandy loam soil spreading over 
26.52% area of the catchment. Sandy clay loam and sandy 
clay types of soil spread over 21.11% and 2.49% area of the 
catchment, respectively. The details of the soil characteris-
tics of the study area are presented in Table 2.

SWAT Model

The SWAT model (Arnold et al.,1998) is a semi-
distributed hydrological model developed by the United 
States Department of Agriculture, Agricultural Research 
Service (USDA-ARS). The SWAT model has been built and 

developed in a semi-distributed way, where the catchment is 
sub-divided into sub-catchments and further into hydrologi-
cal response units (HRUs), and the land use, soil, and slope 
can be accounted for by the model (Uniyal et al., 2015). 
Hence, the input requirements consist of climatic parame-
ters, soil properties, topography, vegetation, and land manage-
ment practices (Neitsch et al., 2011; Padhiary et al., 2019). 
The SWAT model uses a daily, monthly, and annual time 
step and can conduct continuous simulations over a long 
period (Arnold et al., 1998; Neitsch et al., 2011). It can 
reasonably simulate a large un-gauged basin's streamflow, 
sediment, and nutrients load (Neitsch et al., 2011; Panda et 

Table: 2
Soil characteristics of the Kantamal catchment

-3 -1 -1S.No. Soil taxonomy class Texture Bulk density (g cm ) Available water content (mm mm ) EC (dS m )

1 Aeric Endoaquepts Clay loam 1.40 0.14 0.28
2 Aeric Epiaqualfs Clay loam 1.40 0.14 0.28
3 Arenic Haplustalfs Silty clay 1.34 0.16 0.31
4 Chromic Haplusterts Clay 1.32 0.13 0.42
5 Entic Haplusterts Clay 1.32 0.13 0.42
6 Kandic Paleustalfs Sandy loam 1.49 0.1 0.26
7 Lithic Haplustepts Sandy loam 1.49 0.08 0.09
8 Lithic Ustorthents Loam 1.42 0.15 0.09
9 Rhodic Paleustalfs Sandy loam 1.49 0.09 0.07
10 Typic Epiaquepts Clay 1.32 0.13 0.42
11 Typic Haplustalfs Silty clay 1.34 0.16 0.31
12 Typic Rhodustalfs Loam 1.44 0.13 0.07
13 Ultic Haplustalfs Sandy loam 1.48 0.09 0.11
14 Ultic Paleustalfs Sandy clay loam 1.51 0.10 0.13
15 Vertic Endoaquepts Silty clay 1.27 0.15 0.23

SW  = SW  +         (R  - Q  - E  - W  - Q )t 0 day,i surf,i a,i seep,i gw,i

Table: 1
Sources of input data

Data Source

Soil NBSS&LUP (1:50000) (https://www.nbsslup.in/)
Land use National Remote Sensing Centre (1:50000) (https://www.nrsc.gov.in/)
Rainfall Recorded block-wise rainfall data from Special Relief Commissioner, Odisha (https://srcodisha.nic.in/) 
Temperature 0.25× 0.25 Gridded maximum and minimum temperature data from India Meteorological Department (IMD), Pune
Discharge Daily discharge data (2000-2018) from Water Resources Information System of India (India-WRIS), CWC

(https://indiawris.gov.in/wris)
DEM Digital Elevation Model (DEM) from Shuttle Radar Topography Mission (SRTM 30) of USGS

(http://srtm.csi.cgiar.org/)

al., 2021). It simulates runoff based on the United States 
Department of Agriculture, Natural Resources Conservation 
Services-Curve Number Method, 1972 (USDA, NRCS-CN). 
The water balance equation (Neitsch et al., 2011) shown in 
eq. 1 has been used for simulating the hydrological compo-
nents. 

...(1)

Where SW = Final soil water content on the day i (mm), t  

SW = Initial soil water content on the day i (mm), R = o day 

Depth of precipitation on the day i (mm), Q = Amount of surf   

surface runoff on the day i (mm), E = Amount of evapo-a, 

transpiration on the day i (mm), W = Amount of water seep 

entering the vadose zone from the soil profile on the day i 
(mm), Q = Amount of return flow on the day i (mm) and, t = gw 

time interval in the day. 

In the SWAT model, Muskingum or variable storage 
method is built therein for streamflow routing (Arnold et al., 
1998). The lateral flow is estimated using the kinetic 
reservoir routing method based on the degree and length of 
slope and saturated hydraulic conductivity (Sloan et al., 
1983). Green and Ampt infiltration methods (Green and 
Ampt, 1911) are used for quantifying the rate of infiltration, 
whereas return flow is simulated by creating a shallow 
aquifer (Arnold et al., 1998). Percolated water from the 
unsaturated zone is divided into shallow and deep aquifer 
recharges. A simplified volumetric water balance equation 
is used for groundwater recharge. SWAT can simulate 
groundwater height in the shallow aquifer in each HRU 
without any physical datum (Neitsch et al., 2011). Also, it 
does not simulate groundwater flow between adjacent 
HRUs. There are two methods for calculating the surface 
retention coefficient in the SWAT model. In the first method, 
the surface retention coefficient changes with moisture 
content in the soil profile, and in the second method, the 

Fig. 3. Land use / Land cover map of the study area

Fig. 4. Soil map of the study area

surface retention coefficient changes with the cumulative 
evapotranspiration. The model calculates evaporation from 
soil and plant separately. Any of the three methods can 
calculate potential evapotranspiration, i.e., Penman-Monteith 
equation (Monteith, 1965), Priestley-Taylor method (Priestley 
and Taylor, 1972), and Hargreaves method (Hargreaves and 
Samani, 1985) based on climatic data availability.

SWAT-CUP

SWAT calibration and uncertainty procedure (SWAT-
CUP) is a freeware model developed and coupled with the 
SWAT model by Abbaspour et al. (2007). It allows for SA, 
calibration, validation, and uncertainty analysis of various 
hydrological parameters. The SUFI-2 algorithm in SWAT-
CUP was used to study the sensitivity and uncertainty in 
streamflow simulation. This technique is based on a Bayesian 
framework, which provides a method of incorporating new 
information with prior assessments to calculate new values 
(posterior parameters) for the relative likelihood of events 
of interest (Haan, 1977). In addition, several objective 
functions are used in the SUFI-2 technique to reduce the 
non-uniqueness problem in the model parameterization 
(Warusavitharana, 2020).

Further, a t-test was used to identify the relative 
significance of each parameter. The t-test and the p-values 
were used to provide a measure and the significance of the 
sensitivity, respectively. The larger absolute value of the t-
test indicates a parameter to be more sensitive, and lower p-
values close to zero show more significance (Narsimlu et 
al., 2015). The SUFI-2 algorithm accounts for different 
types of uncertainties arising from model conceptualiza-
tion, parameters, and observed data (Abbaspour et al., 2015, 
Kumarasamy and Belmont, 2018). The input parameter 
uncertainty is represented by uniform distribution, while the 
output uncertainty is computed at 95% prediction uncer-
tainty (95PPU) (Khoi and Thom, 2015). The cumulative 
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soil and LU maps are illustrated in Fig's 3 and 4, respectively.

Land Use and Soil Type 

Land use / land cover (LU/LC) mainly affects the runoff 
and infiltration processes of the hydrological cycle (Tegegne 
et al., 2019). LU/LC map at 1:50000 scale used in this study 
was obtained from National Remote Sensing Centre (NRSC), 
Hyderabad, India, developed for 2011-12. The study area is 
divided into five LU/LC classes: water bodies, wasteland, 
forest, build-up, and agricultural land, as illustrated in Fig. 
3. Water bodies are found to cover only 1.96% area of the 
catchment. On the other hand, the agricultural land is the 
dominant land use of the catchment, and it covers half of the 
study area (50.11%) and is mostly spread in the central and 
northern parts of the catchment.

The forest land covers 37.52% of the catchment and 
spreads mostly in the eastern, south-eastern, and western 
regions. The built-up areas (1.2% of catchment area) and 
wastelands (9.21% of catchment area) are scattered sporadi-
cally throughout the catchment. Soil type also plays a 
prominent role in governing the hydrological response. The 
soil map of the study area was collected from the NBSS& 
LUP, Kolkata. The soil texture for the study area is repre-
sented by seven classes: clay, silty clay, clay loam, silty clay 
loam, sandy clay loam, loam, and sandy loam, as illustrated 
in Fig. 4. Clay loam soil covers about half of the catchment 
area (49.88%), followed by sandy loam soil spreading over 
26.52% area of the catchment. Sandy clay loam and sandy 
clay types of soil spread over 21.11% and 2.49% area of the 
catchment, respectively. The details of the soil characteris-
tics of the study area are presented in Table 2.

SWAT Model

The SWAT model (Arnold et al.,1998) is a semi-
distributed hydrological model developed by the United 
States Department of Agriculture, Agricultural Research 
Service (USDA-ARS). The SWAT model has been built and 

developed in a semi-distributed way, where the catchment is 
sub-divided into sub-catchments and further into hydrologi-
cal response units (HRUs), and the land use, soil, and slope 
can be accounted for by the model (Uniyal et al., 2015). 
Hence, the input requirements consist of climatic parame-
ters, soil properties, topography, vegetation, and land manage-
ment practices (Neitsch et al., 2011; Padhiary et al., 2019). 
The SWAT model uses a daily, monthly, and annual time 
step and can conduct continuous simulations over a long 
period (Arnold et al., 1998; Neitsch et al., 2011). It can 
reasonably simulate a large un-gauged basin's streamflow, 
sediment, and nutrients load (Neitsch et al., 2011; Panda et 

Table: 2
Soil characteristics of the Kantamal catchment

-3 -1 -1S.No. Soil taxonomy class Texture Bulk density (g cm ) Available water content (mm mm ) EC (dS m )

1 Aeric Endoaquepts Clay loam 1.40 0.14 0.28
2 Aeric Epiaqualfs Clay loam 1.40 0.14 0.28
3 Arenic Haplustalfs Silty clay 1.34 0.16 0.31
4 Chromic Haplusterts Clay 1.32 0.13 0.42
5 Entic Haplusterts Clay 1.32 0.13 0.42
6 Kandic Paleustalfs Sandy loam 1.49 0.1 0.26
7 Lithic Haplustepts Sandy loam 1.49 0.08 0.09
8 Lithic Ustorthents Loam 1.42 0.15 0.09
9 Rhodic Paleustalfs Sandy loam 1.49 0.09 0.07
10 Typic Epiaquepts Clay 1.32 0.13 0.42
11 Typic Haplustalfs Silty clay 1.34 0.16 0.31
12 Typic Rhodustalfs Loam 1.44 0.13 0.07
13 Ultic Haplustalfs Sandy loam 1.48 0.09 0.11
14 Ultic Paleustalfs Sandy clay loam 1.51 0.10 0.13
15 Vertic Endoaquepts Silty clay 1.27 0.15 0.23

SW  = SW  +         (R  - Q  - E  - W  - Q )t 0 day,i surf,i a,i seep,i gw,i

Table: 1
Sources of input data

Data Source

Soil NBSS&LUP (1:50000) (https://www.nbsslup.in/)
Land use National Remote Sensing Centre (1:50000) (https://www.nrsc.gov.in/)
Rainfall Recorded block-wise rainfall data from Special Relief Commissioner, Odisha (https://srcodisha.nic.in/) 
Temperature 0.25× 0.25 Gridded maximum and minimum temperature data from India Meteorological Department (IMD), Pune
Discharge Daily discharge data (2000-2018) from Water Resources Information System of India (India-WRIS), CWC

(https://indiawris.gov.in/wris)
DEM Digital Elevation Model (DEM) from Shuttle Radar Topography Mission (SRTM 30) of USGS

(http://srtm.csi.cgiar.org/)

al., 2021). It simulates runoff based on the United States 
Department of Agriculture, Natural Resources Conservation 
Services-Curve Number Method, 1972 (USDA, NRCS-CN). 
The water balance equation (Neitsch et al., 2011) shown in 
eq. 1 has been used for simulating the hydrological compo-
nents. 

...(1)

Where SW = Final soil water content on the day i (mm), t  

SW = Initial soil water content on the day i (mm), R = o day 

Depth of precipitation on the day i (mm), Q = Amount of surf   

surface runoff on the day i (mm), E = Amount of evapo-a, 

transpiration on the day i (mm), W = Amount of water seep 

entering the vadose zone from the soil profile on the day i 
(mm), Q = Amount of return flow on the day i (mm) and, t = gw 

time interval in the day. 

In the SWAT model, Muskingum or variable storage 
method is built therein for streamflow routing (Arnold et al., 
1998). The lateral flow is estimated using the kinetic 
reservoir routing method based on the degree and length of 
slope and saturated hydraulic conductivity (Sloan et al., 
1983). Green and Ampt infiltration methods (Green and 
Ampt, 1911) are used for quantifying the rate of infiltration, 
whereas return flow is simulated by creating a shallow 
aquifer (Arnold et al., 1998). Percolated water from the 
unsaturated zone is divided into shallow and deep aquifer 
recharges. A simplified volumetric water balance equation 
is used for groundwater recharge. SWAT can simulate 
groundwater height in the shallow aquifer in each HRU 
without any physical datum (Neitsch et al., 2011). Also, it 
does not simulate groundwater flow between adjacent 
HRUs. There are two methods for calculating the surface 
retention coefficient in the SWAT model. In the first method, 
the surface retention coefficient changes with moisture 
content in the soil profile, and in the second method, the 

Fig. 3. Land use / Land cover map of the study area

Fig. 4. Soil map of the study area

surface retention coefficient changes with the cumulative 
evapotranspiration. The model calculates evaporation from 
soil and plant separately. Any of the three methods can 
calculate potential evapotranspiration, i.e., Penman-Monteith 
equation (Monteith, 1965), Priestley-Taylor method (Priestley 
and Taylor, 1972), and Hargreaves method (Hargreaves and 
Samani, 1985) based on climatic data availability.

SWAT-CUP

SWAT calibration and uncertainty procedure (SWAT-
CUP) is a freeware model developed and coupled with the 
SWAT model by Abbaspour et al. (2007). It allows for SA, 
calibration, validation, and uncertainty analysis of various 
hydrological parameters. The SUFI-2 algorithm in SWAT-
CUP was used to study the sensitivity and uncertainty in 
streamflow simulation. This technique is based on a Bayesian 
framework, which provides a method of incorporating new 
information with prior assessments to calculate new values 
(posterior parameters) for the relative likelihood of events 
of interest (Haan, 1977). In addition, several objective 
functions are used in the SUFI-2 technique to reduce the 
non-uniqueness problem in the model parameterization 
(Warusavitharana, 2020).

Further, a t-test was used to identify the relative 
significance of each parameter. The t-test and the p-values 
were used to provide a measure and the significance of the 
sensitivity, respectively. The larger absolute value of the t-
test indicates a parameter to be more sensitive, and lower p-
values close to zero show more significance (Narsimlu et 
al., 2015). The SUFI-2 algorithm accounts for different 
types of uncertainties arising from model conceptualiza-
tion, parameters, and observed data (Abbaspour et al., 2015, 
Kumarasamy and Belmont, 2018). The input parameter 
uncertainty is represented by uniform distribution, while the 
output uncertainty is computed at 95% prediction uncer-
tainty (95PPU) (Khoi and Thom, 2015). The cumulative 
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distribution of an output variable is obtained through the 
Latin hypercube sampling method calculated at 2.5 and 
97.5% prediction limit (Abbaspour et al., 2015). The 
calibration and uncertainty analysis strength is quantified 
by two additional statistics known as P and R-factor. The P-
factor represents the percentage of measured data bracketed 
by 95% prediction uncertainty (95PPU), while the R-factor 
represents the average width of the 95PPU band divided by 
the standard deviation of the observed variable.

Calibration and Validation

SWAT has been calibrated and validated for monthly 
streamflow by comparing the observed streamflow at the 
Kantamal outlet. The model was run for 19 years (2000-
2018) by considering the first 4 years as the warm-up 
period. Streamflow data from 2004 to 2012 were used for 
calibration, whereas the remaining 6 years of the datasets, 
i.e., 2013-2018, were used for validating the model. After 
completing the simulation, the SWAT-CUP was used for 
model sensitivity, calibration, and uncertainty analysis. 
Global SA was performed to identify the most sensitive 
parameters. The objective of the calibration is to optimize 
the model parameters. Almost 15 parameters were selected 
for model calibration, sensitivity, and uncertainty analysis 
of streamflow simulation. Recommended ranges of these 
fifteen parameters in terms of maximum and minimum 
values are shown in Table 3.

Performance Indicators

Five parameters such as coefficient of determination 
2(R ), Nash-Sutcliffe Efficiency (NSE), Percentage BIAS 

(PBIAS), P-factor, and R-factor have been used for the 
evaluation of model performance. These parameters are 
expressed mathematically through eqs. 2, 3, and 4.

3.  RESULTS AND DISCUSSION

Model Calibration and Parameterization

In the present study, a rigorous calibration based on SA 
of model parameters has been made using the SWAT-CUP 
model (Neitsch et al., 2011). A total number of 15 SWAT 
parameters, as presented in Table 3, were selected for model 
calibration and uncertainty analysis based on previous 
studies and SWAT literature (Neitsch et al., 2002). Global 
SA was conducted at a monthly time-step using latin hyper 
cube sampling in the early calibration stage. The first step in 
the calibration process is to adjust the input parameter 
values to closely match the simulated results with the 
observed variables and, thus, screen out the most sensitive 
parameters influencing the variable compared to the other 

parameters. The SUFI-2 algorithm performed a SA in 
SWAT-CUP with five iterations and all iterations having 
1000 simulations to obtain the optimal values of model 
parameters. Dotty plots so developed were the outputs of the 
model run with an objective function of maximizing Nash 
Sutcliffe Efficiency (NSE) during calibration and used to 
depict the distribution of sampling points and parameter 
sensitivity. The dotty plots conditioned in this study using 
the SUFI-2 algorithm (Fig. 5) represent most of the sensitive 
parameters with NSE values greater than the threshold 
value (0.5) during the monthly streamflow simulation.

Two indicators, such as t-stat and p-value, were used to 
measure each parameter's sensitivity and relative signifi-
cance (Abbaspour et al., 2015). The relative ranking of 
these fifteen parameters according to their response to 

...(2)

...(3)

...(4)

th thWhere, O  is the i observed data; S  is the i  pre-i i

dicted/simulated value; Ō is the mean of measured / 
observed data; S  is the mean of predicted data, and N is the i

total number of the simulation period.

The range of the P-factor varies from 0 to 1, with values 
close to 1 indicating a very high model performance and 

efficiency, while the R-factor varies in the range of 0 to T 
(Abbaspour et al., 2007; Zhao et al., 2018). A P-factor value 
equal to 1.0 and an R-factor value of 0 are obtained when 
there is no uncertainty in the modeling study. The P and R-
factor are expressed mathematically as presented in eq. 5 
and 6, respectively (Abbaspour et al., 2007; Verma and 
Verma, 2019).

...(5)

Where, ny  is the number of measured values bracketed ti

by the 95PPU, and N is the total number of measured values.

...(6)

Where,            and           are the upper and lower boun-
daries of the 95UB (Uncertainty Band), respectively and σ  obs

is the standard deviation of the observed data.

Table: 3
Minimum-maximum and fitted value of calibration parameters by SUFI-2

S.No. Parameter Description Minimum Maximum Fitted value

   1 v__OV_N.hru Manning's "n" value for overland flow 0.01 30.0 18.49
   2 v__LAT_TIME.hru Lateral flow travel time 0 180.0 48.99
   3 v__ ESCO.hru Soil evaporation compensation factor 0 1.0 0.02
   4 v__EPCO.hru Plant uptake compensation factor 0 1.0 0.35
   5 v_SURLAG.hru Surface runoff lag coefficient (day) 0.05 24.0 15.83
   6 v__CANMX.hru Maximum canopy storage 1.0 100.0 -17.55
   7 v__RCHRG_DP.gw Deep aquifer percolation fraction 0 1.0 0.95

-1   8 r_SOL_K (1).sol Saturated hydraulic conductivity (mm hr ) 0 2000.0 899.96
-1   9 r_SOL_AWC(1).sol Available water capacity of the soil layer r (mm mm ) 0.23 1.06 0.35

 10 r__CH_N2.rte Manning's "n" value for the main channel 0.11 0.45 0.29
-1 11 r_CH_K2.rte Effective hydraulic conductivity in main channel alluvium (mm hr ) 0.01 500.0 74.20

 12 r_CN2.mgt SCS runoff curve number -0.20 0.20 -0.10
 13 v_ALPHA_BF.gw Base flow alpha factor (days) 0.00 1.00 0.46
 14 v_GW_DELAY.gw Groundwater delay (days) 0 500.0 242.00
 15 v_GWQMN.gw Threshold depth of water in the shallow aquifer required for return 0.00 5000.0 0.51

flow to occur (mm)

Note: (i) a_ means the given value is added to the existing parameter value; (ii) r_ means the current parameter value is multiplied by (1+a value); (iii) v_ 
means the current parameter value is to be replaced by the given value.

Fig. 5. Dotty plots with the objective function of NSE against each aggregate SWAT parameter during the calibration period
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distribution of an output variable is obtained through the 
Latin hypercube sampling method calculated at 2.5 and 
97.5% prediction limit (Abbaspour et al., 2015). The 
calibration and uncertainty analysis strength is quantified 
by two additional statistics known as P and R-factor. The P-
factor represents the percentage of measured data bracketed 
by 95% prediction uncertainty (95PPU), while the R-factor 
represents the average width of the 95PPU band divided by 
the standard deviation of the observed variable.

Calibration and Validation

SWAT has been calibrated and validated for monthly 
streamflow by comparing the observed streamflow at the 
Kantamal outlet. The model was run for 19 years (2000-
2018) by considering the first 4 years as the warm-up 
period. Streamflow data from 2004 to 2012 were used for 
calibration, whereas the remaining 6 years of the datasets, 
i.e., 2013-2018, were used for validating the model. After 
completing the simulation, the SWAT-CUP was used for 
model sensitivity, calibration, and uncertainty analysis. 
Global SA was performed to identify the most sensitive 
parameters. The objective of the calibration is to optimize 
the model parameters. Almost 15 parameters were selected 
for model calibration, sensitivity, and uncertainty analysis 
of streamflow simulation. Recommended ranges of these 
fifteen parameters in terms of maximum and minimum 
values are shown in Table 3.

Performance Indicators

Five parameters such as coefficient of determination 
2(R ), Nash-Sutcliffe Efficiency (NSE), Percentage BIAS 

(PBIAS), P-factor, and R-factor have been used for the 
evaluation of model performance. These parameters are 
expressed mathematically through eqs. 2, 3, and 4.

3.  RESULTS AND DISCUSSION

Model Calibration and Parameterization

In the present study, a rigorous calibration based on SA 
of model parameters has been made using the SWAT-CUP 
model (Neitsch et al., 2011). A total number of 15 SWAT 
parameters, as presented in Table 3, were selected for model 
calibration and uncertainty analysis based on previous 
studies and SWAT literature (Neitsch et al., 2002). Global 
SA was conducted at a monthly time-step using latin hyper 
cube sampling in the early calibration stage. The first step in 
the calibration process is to adjust the input parameter 
values to closely match the simulated results with the 
observed variables and, thus, screen out the most sensitive 
parameters influencing the variable compared to the other 

parameters. The SUFI-2 algorithm performed a SA in 
SWAT-CUP with five iterations and all iterations having 
1000 simulations to obtain the optimal values of model 
parameters. Dotty plots so developed were the outputs of the 
model run with an objective function of maximizing Nash 
Sutcliffe Efficiency (NSE) during calibration and used to 
depict the distribution of sampling points and parameter 
sensitivity. The dotty plots conditioned in this study using 
the SUFI-2 algorithm (Fig. 5) represent most of the sensitive 
parameters with NSE values greater than the threshold 
value (0.5) during the monthly streamflow simulation.

Two indicators, such as t-stat and p-value, were used to 
measure each parameter's sensitivity and relative signifi-
cance (Abbaspour et al., 2015). The relative ranking of 
these fifteen parameters according to their response to 

...(2)

...(3)

...(4)

th thWhere, O  is the i observed data; S  is the i  pre-i i

dicted/simulated value; Ō is the mean of measured / 
observed data; S  is the mean of predicted data, and N is the i

total number of the simulation period.

The range of the P-factor varies from 0 to 1, with values 
close to 1 indicating a very high model performance and 

efficiency, while the R-factor varies in the range of 0 to T 
(Abbaspour et al., 2007; Zhao et al., 2018). A P-factor value 
equal to 1.0 and an R-factor value of 0 are obtained when 
there is no uncertainty in the modeling study. The P and R-
factor are expressed mathematically as presented in eq. 5 
and 6, respectively (Abbaspour et al., 2007; Verma and 
Verma, 2019).

...(5)

Where, ny  is the number of measured values bracketed ti

by the 95PPU, and N is the total number of measured values.

...(6)

Where,            and           are the upper and lower boun-
daries of the 95UB (Uncertainty Band), respectively and σ  obs

is the standard deviation of the observed data.

Table: 3
Minimum-maximum and fitted value of calibration parameters by SUFI-2

S.No. Parameter Description Minimum Maximum Fitted value

   1 v__OV_N.hru Manning's "n" value for overland flow 0.01 30.0 18.49
   2 v__LAT_TIME.hru Lateral flow travel time 0 180.0 48.99
   3 v__ ESCO.hru Soil evaporation compensation factor 0 1.0 0.02
   4 v__EPCO.hru Plant uptake compensation factor 0 1.0 0.35
   5 v_SURLAG.hru Surface runoff lag coefficient (day) 0.05 24.0 15.83
   6 v__CANMX.hru Maximum canopy storage 1.0 100.0 -17.55
   7 v__RCHRG_DP.gw Deep aquifer percolation fraction 0 1.0 0.95

-1   8 r_SOL_K (1).sol Saturated hydraulic conductivity (mm hr ) 0 2000.0 899.96
-1   9 r_SOL_AWC(1).sol Available water capacity of the soil layer r (mm mm ) 0.23 1.06 0.35

 10 r__CH_N2.rte Manning's "n" value for the main channel 0.11 0.45 0.29
-1 11 r_CH_K2.rte Effective hydraulic conductivity in main channel alluvium (mm hr ) 0.01 500.0 74.20

 12 r_CN2.mgt SCS runoff curve number -0.20 0.20 -0.10
 13 v_ALPHA_BF.gw Base flow alpha factor (days) 0.00 1.00 0.46
 14 v_GW_DELAY.gw Groundwater delay (days) 0 500.0 242.00
 15 v_GWQMN.gw Threshold depth of water in the shallow aquifer required for return 0.00 5000.0 0.51

flow to occur (mm)

Note: (i) a_ means the given value is added to the existing parameter value; (ii) r_ means the current parameter value is multiplied by (1+a value); (iii) v_ 
means the current parameter value is to be replaced by the given value.

Fig. 5. Dotty plots with the objective function of NSE against each aggregate SWAT parameter during the calibration period
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streamflow is presented in Fig. 6. The most sensitive 
parameter was the SCS-CN value for AMC II, followed by 
the soil evaporation compensation factor. SCS-CN depends 
on catchment characteristics like land use, hydrological soil 
group, crop management practices, and antecedent soil 
moisture conditions. CN2 ranks first among the sensitive 
parameters, reflecting a more significant influence of 
catchment characteristics on runoff generation (Padhiary et 
al., 2019; Verma and Verma, 2019). CN2 is the primary 
source of uncertainty for streamflow modeling in SWAT 
(Gassman et al., 2007, Tegegne and Kim, 2018; Tegegne et 
al., 2019; Zhang et al., 2019). As SWAT is programmed with 
a curve number method to estimate the direct runoff, the 
curve number of any hydrologic response unit (HRU) is 
directly proportional to the runoff generation. Higher the 
curve number represents high runoff potential and vice-
versa. The soil evaporation compensation factor that 
represents the range of the soil depth used to meet the 
evaporative soil demands appears to be the second sensitive 
parameter for influencing runoff generation. Its value varies 
from 0.01 to 1, and in the present scenario, the fitted value is 
0.02. It indicates that the model is capable of extracting 
moisture from the lower depths of soil due to capillary 
action and the development of cracks and fissures, as in the 
case of clay soil.

Model performance and Uncertainty Analysis (UA) 

In the present study, the simulated discharges were 
compared with the corresponding observed ones at the 
outlet of Kantamal catchment during the calibration period 
from 2004 to 2012 and the validation period from 2013 to 
2018, as portrayed in Fig's 7 and 8, respectively. The perfor-
mance indices obtained during the calibration and valida-

2,tion periods are listed in Table 4. The NSE, R  and PBIAS 
values were observed as 0.91, 0.94, and -0.07, respectively, 
during calibration and 0.82, 0.87, and -0.16, respectively, 

during validation. It indicates that model simulation results 
are quite satisfactory. Similar results have been reported by 
Uniyal et al., 2015; Padhiary et al., 2019; Verma and Verma, 
2019; Vema and Sudheer, 2020.

most sensitive parameter among all the parameters for 
Kantamal catchment. The model performance during calibra-
tion of monthly streamflow by SUFI-2 was excellent with 

2,NSE, R  and PBIAS values of 0.91, 0.94, and -0.07, 
respectively. The model performance is reasonably accept-

2,able during validation as indicated by the NSE, R  and 
PBIAS values of 0.82, 0.87, and -0.16, respectively. The P 
and R factor values of 0.77 and 0.98 during calibration and 
0.79 and 0.86 during the validation period, respectively, 
indicate that the model performance is satisfactory under 
the parameter uncertainty. Based on the model simulation 
results, it may be inferred that the SWAT model can simulate 
hydrological fluxes under parameter uncertainty success-
fully in the agriculture-dominated catchment. 

Abbaspour, K.C., Johnson, A. and Van-Genuchten, M.T. 2004. Estimating 
uncertain low and transport parameters using a sequential uncertainty 
fitting procedure. Vadose Zone J., 3(4): 1340-1352.
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Further, the simulated streamflow was compared with 
the observed flow using scatter plots. The scatter plots of 
simulated versus observed streamflow during calibration 
and validation, as illustrated in Fig's 9 and 10, respectively, 
indicate a very close match between the two. Further, both 
the figures also depict almost efficient predictions of 
streamflow by the model during high and low flow periods. 
It shows the potentiality of the SWAT model with respect to 
the precise estimation of the streamflow in an agriculture 
dominant catchment. 

Parameter uncertainty in streamflow simulation has 
been quantified by P and R-factors during calibration and 
validation periods. The values of P and R-factors are 0.77 
and 0.98 during calibration and 0.79 and 0.86 during the 
validation period, respectively (Table 4). The P- and R-
factor values within the desired range during both calibra-
tion and validation periods suggest that the uncertainty of 
the parameters is well acceptable during the entire simula-
tion period.  

Further, the simulated streamflow values in a monthly 
time step were plotted with the observed values at the 
95PPU band, as shown in Fig's 7 and 8. The derived results 
indicate that most of the observations are bracketed within 
the 95PPU band. However, some irregularities are also 
observed during the peak flow simulation. The slight 
deviation of the observed peak values from the 95PPU 
boundary in 2005, 2009, and 2010 during calibration (Fig. 
7), and 2013, 2014, and 2016 during validation (Fig. 8) is 
evidence. Thus, it may be inferred that the model's overall 
performance under parameter uncertainty is satisfactory.

4. CONCLUSIONS

The natural hydrologic system is very complex and not 
easily understood; therefore, hydrological models are used 
to simulate the flows. The present study demonstrates the 
application of the SWAT model in the Kantamal catchment 
of Mahanadi river basin, India, for simulating streamflow, 
identification of the most sensitive parameters, and estimation 
of model parameters uncertainty using SUFI-2 algorithm. 
Identification of sensitive parameters and their ranking was 
done during the pre-calibration uncertainty analysis process. 
The results reveal that fifteen parameters are most sensitive 
and greatly influence the streamflow. Soil conservation service 
curve number for AMC II factor has been identified as the 

Fig. 8. Time series plot of simulated vs. observed streamflow 
with 95PPU band during the validation period
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Fig. 7. Location map of Kantamal catchment time series plot of 
simulated vs. observed streamflow with 95PPU band 
during the calibration period
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Fig. 6. Best fitted, t-stat and p-value of calibration parameters by SUFI-2

Table: 4
Summary statistics of model performance

Indices Calibration Validation
2R 0.94 0.87

NSE 0.91 0.82
PBIAS -0.07 -0.16
P-factor 0.77 0.79
R-factor 0.98 0.86

Fig. 9. Scatter plots of observed vs. simulated streamflow by 
SUFI-2 during calibration (2004-2012)
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Fig. 10. Scatter plots of observed vs. simulated streamflow by 
SUFI-2 during validation (2013-2018)
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streamflow is presented in Fig. 6. The most sensitive 
parameter was the SCS-CN value for AMC II, followed by 
the soil evaporation compensation factor. SCS-CN depends 
on catchment characteristics like land use, hydrological soil 
group, crop management practices, and antecedent soil 
moisture conditions. CN2 ranks first among the sensitive 
parameters, reflecting a more significant influence of 
catchment characteristics on runoff generation (Padhiary et 
al., 2019; Verma and Verma, 2019). CN2 is the primary 
source of uncertainty for streamflow modeling in SWAT 
(Gassman et al., 2007, Tegegne and Kim, 2018; Tegegne et 
al., 2019; Zhang et al., 2019). As SWAT is programmed with 
a curve number method to estimate the direct runoff, the 
curve number of any hydrologic response unit (HRU) is 
directly proportional to the runoff generation. Higher the 
curve number represents high runoff potential and vice-
versa. The soil evaporation compensation factor that 
represents the range of the soil depth used to meet the 
evaporative soil demands appears to be the second sensitive 
parameter for influencing runoff generation. Its value varies 
from 0.01 to 1, and in the present scenario, the fitted value is 
0.02. It indicates that the model is capable of extracting 
moisture from the lower depths of soil due to capillary 
action and the development of cracks and fissures, as in the 
case of clay soil.

Model performance and Uncertainty Analysis (UA) 

In the present study, the simulated discharges were 
compared with the corresponding observed ones at the 
outlet of Kantamal catchment during the calibration period 
from 2004 to 2012 and the validation period from 2013 to 
2018, as portrayed in Fig's 7 and 8, respectively. The perfor-
mance indices obtained during the calibration and valida-

2,tion periods are listed in Table 4. The NSE, R  and PBIAS 
values were observed as 0.91, 0.94, and -0.07, respectively, 
during calibration and 0.82, 0.87, and -0.16, respectively, 

during validation. It indicates that model simulation results 
are quite satisfactory. Similar results have been reported by 
Uniyal et al., 2015; Padhiary et al., 2019; Verma and Verma, 
2019; Vema and Sudheer, 2020.

most sensitive parameter among all the parameters for 
Kantamal catchment. The model performance during calibra-
tion of monthly streamflow by SUFI-2 was excellent with 

2,NSE, R  and PBIAS values of 0.91, 0.94, and -0.07, 
respectively. The model performance is reasonably accept-

2,able during validation as indicated by the NSE, R  and 
PBIAS values of 0.82, 0.87, and -0.16, respectively. The P 
and R factor values of 0.77 and 0.98 during calibration and 
0.79 and 0.86 during the validation period, respectively, 
indicate that the model performance is satisfactory under 
the parameter uncertainty. Based on the model simulation 
results, it may be inferred that the SWAT model can simulate 
hydrological fluxes under parameter uncertainty success-
fully in the agriculture-dominated catchment. 

Abbaspour, K.C., Johnson, A. and Van-Genuchten, M.T. 2004. Estimating 
uncertain low and transport parameters using a sequential uncertainty 
fitting procedure. Vadose Zone J., 3(4): 1340-1352.
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Fig. 9. Scatter plots of observed vs. simulated streamflow by 
SUFI-2 during calibration (2004-2012)
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