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Efficient groundwater management through judicious irrigation scheduling can be 
accomplished by using the data of actual evapotranspiration (ETact), deep percolation 
loss (DPL) and surface runoff (SR). In data-scarce regions, the water budgeting approach 
using satellite-derived evapotranspiration can be an alternative approach to estimate 
different water balancing parameters. In the present study the operational simplified 
surface energy balance (SSEBop) model derived ETact data based on moderate 
resolution imaging spectroradiometer evapotranspiration (MODIS ET) fractions was 
used to calibrate and validate the SWAT model for five districts viz., Barnala, Sangrur, 
Moga, Patiala and Ludhiana of central Punjab, India. It was observed that coefficient of 

2determination (R ) and the model efficiency of the calibrated and validated SWAT 
model varied from 0.65 to 0.75 and 0.50 to 0.60, respectively. Moreover, the district-

-1wise AET values estimated by the validated SWAT model were 409.3 mm yr , 557.5 
-1 -1 -1 -1 mm yr , 454 mm yr , 425.2 mm yr  and 548 mm yr for Moga, Patiala, Sangrur, 

Barnala and Ludhiana, respectively. Further, the highest DPL rate estimated by the 
validated SWAT model was 9.6% of average rainfall for the Patiala district and other 
districts, it varied from 1.1% to 8.8%. Nonetheless, it was ascertained that the satellite-
derived evapotranspiration data can be successfully used for calibration and validation 
of SWAT model besides estimation of DPL and SR for efficient groundwater manage-
ment at a regional scale.
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1. INTRODUCTION

Groundwater is a major source of irrigation in most 
parts of India (Chindarkar and Grafton 2019). In central 
Punjab districts of India, rice-wheatis the dominant cropping 
system where groundwater is extracted for irrigation of field 
crops. Unfortunately, due to the overdraft of groundwater 
resources, the water table has depleted critically in the 
region over past decades (Kumar et al., 2021). Keeping this 
in view, it is imperative to come up with crop-specific 
irrigation schedules to save water and reduce the groundwa-
ter draft in the region. In order to accomplish this, the water 
budgeting components viz., rainfall, SR, ET and percolation 
losses (PL) need to be quantified (Chatterjee et al., 2021; 
Debnath et al., 2021; Chatterjee et al., 2019). However, the 
information of SR, ETact and PL are generally not available 
to perform the water budgeting analysis at regional scales. 
Though the hydrological models are capable of simulating 
such parameters, in ungauged watershed systems due to 
non-availability of measured runoff and other parameters, it 

becomes difficult to calibrate and validate such models. In 
such scenarios, the satellite-derived ETact values can be 
used to calibrate and validate the hydrologic models besides 
generation of a hydrologic response and flux-related 
parameters of water budgeting. The soil and water assess-
ment tool (SWAT) is being extensively used by hydrologists 
for the assessment of SR and groundwater quality parame-
ters at a regional scale (Mondal et al., 2021; Tufa and Sime, 
2021; Guug et al., 2020; Patil et al., 2019; Bhatt et al., 2016; 
Kiptala et al., 2014; Gamage and Danaka, 2015). Sirisena et 
al., 2020 have compared two different calibration approaches 
of the SWAT model, one with a single variable viz., stream-
flow and satellite-derived ET separately and the other with 
streamflow and ET data in combination. They reported that 
blending of streamflow and ET data resulted in better model 
performance with nash-sutcliffe efficiencies (NSE) >0.85 
for streamflow estimation, whereas NSE values for stream-
flow estimations were 0.98 and 0.63 while model was 
calibrated using streamflow and ET data separately. ETact 
data derived by MODIS ETact, which isavailable as open-
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sourceand used by researchers alongwith water balance 
models forestimation of hydrologic responses (Poméon et 
al., 2018). Miranda et al. (2017) compared eddy-covariance 
system measured ET data with MODIS derived (MOD 
16A2) daily, monthly ET data and found a correlation of 
0.82 between the eddy covariance method measured ET and 
MODIS derived monthly ET values. They suggested that 
MODIS derived freely available and easy to use ET data can 
be successfully used for meteorological and hydrological 
studies.

Parajuli et al. (2018) used a streamflow-based approach, 
MODIS ET-based approach and both the FLOW-ET-based 
approach for SWAT model calibration and validation in 
sunflower river watershed, north-western Mississippi. They 
reported an overestimation of SWAT estimated ET by 8% as 
compared to MODIS derived ET and concluded that 
MODIS ET data can be used for SWAT model calibration 
and validation and successful estimation of SWAT based 
streamflow and ET in data-scarce watersheds. Abiodun et 
al. (2018) compared SWAT model estimated ET with 
MODIS (MOD16) satellite-derived ET estimates for the 
Sixth Creek catchment of the Western Mount Lofty Ranges, 
South Australia and reported differences of 31, 19, 15, 11 
and 9% in ET estimation between the SWAT and MOD16 
methods. They concluded that for complex terrain situations 
SWAT estimated ET and MODIS satellite-derived ET were 

2 well correlated up to 4 km catchment size. Dash, 2018 
calibrated SWAT model using (MODIS -MOD16A2) ET 
data at daily (8-day composite) and monthly intervals for 
ungauged Sirsa river basin in north-west Himalaya, India. It 
was reported from the study that SWAT model estimated ET 
was in good agreement with MODIS-derived monthly ET 
data. The study suggested the use of remotely sensed ET 
data for calibration and validation of SWAT model with 
acceptable accuracy in ungauged large river basins.

Keeping in view of the reviewed literature pertaining to 
use of satellite-derived ETact computation using hydrologi-
cal models, the present study was undertaken to calibrate 
and validate SWAT using MODIS ET fractions based ETact 
data derived through operational simplified surface energy 
balance (SSEBop) model version 5.0 for five districts viz., 
Moga, Barnala, Sangrur, Patiala, and Ludhiana of Central 
Punjab, India. Further, the validated SWAT model was used 
for estimation of SR and DPL for water budgeting analysis 
at a regional scale.

Study Area

The present study was undertaken for five districts of 
Punjab state, India viz., Barnala, Moga, Sangrur, Patiala and 
Ludhiana located in 29.9°N-31.07°N latitudes to 74.9°E-
76.8°E longitudes (Fig.1). Satluj is the major river crossing 
near the boundary of Ludhiana districts from north-east to 

2. MATERIALS AND METHODS

the north-western direction. River Sutlej in the north and 
river Ghaggar in the south alongwith Sirhind and Bhakracanal 
irrigation system form the drainage network in the study 
area. Rice-wheat are the major crops cultivated in these 
districts. Soil of the study districts is mainly the alluvial soil. 
The three main seasons of these districts are the summer 
season (April to June), the rainy season (July to September) 
and the winter season (December to February). Canal and 
ground water are the two sources of irrigation in the study 
area. Despite the presence of the canal command, about 
89% and 11% of the net sown area is irrigated by tubewells 
and canal networks, respectively. So, a majority of cropped 
area in the region is irrigated by ground water resources. 
Further, the region is having land use and land cover 
(LU/LC) (Fig. 2) with 6.9% buit-up area (URMD), 81.15% 
agricultural crop land (AGCL), 6.12% current fallow land 
(PAST), 0.5% plantation area (ORCD), 0.6% deciduous 
forest (FRSD), 0.02% scrub forest (SHRB), 3.8% waste 
land (BSVG) and 0.8% water bodies (WATB).

Data Used in the Study

Input data required for operation of SWAT model and 
estimation of hydrological fluxes include rainfall (RF), 
maximum temperature (MaxT), minimum temperature 
(MinT), relative humidity (RH), sunshine hours (SSH), 
wind velocity (WV), LU/LC, soil textural classification, 
crop management data and digital elevation model (DEM) 
data. Sources of acquired data for analysis and  their 
resolution are presented in Table 1.

Input Data Preparation for SWAT Model  

The R software was used for extracting the IMD 
gridded RF, MaxT and MinT data for the study districts. All 

manually to generate the natural drainage network (NDN). 
NDNs were generated automatically by selecting the DEM-
based stream generation module of SWAT and the generated 

TMstreams were verified using Google  earth images. Three 
slope classes viz,. 0-2%, 2-10%, >10% and the threshold 
values of land use percentage at 15%, 10% and 5%, respec-
tively (Kalcic et al., 2015) were generated. The HRUs and 
sub-basins were generated considering the threshold values 
of land use percentage over sub-basin area, soil class 
percentage over land use area and the slope class percentage 
over soil area as 15%, 10% and 5%, respectively. SWAT 
model was run from year 2003-2013 using initial 3 years 
(2000-2002) as the model warm-up period. The USDA SCS 
curve number method (USDA, 1972), Penman- Monteith  
method (Monteith, 1965) and the Ritchie method (Ritchie, 
1972) were selected for estimation of the SR, ET  and AET 0

during SWAT simulations. The PL which is the downward 
percolation flux entering the vadose zone from the soil 
profile (mm) was estimated by SWAT model using water 
balance approach.

SWAT Model Calibration and Validation 

The MODIS ET fractions based monthly ETact data at 
~500 m resolution were extracted using R software. SWAT 
parameters were optimized using SWAT-CUP module. 
SUFI-2 algorithm was used to optimize the values of sixty 
three parameters pertaining to soil, basin, plant and 
groundwater components used for calibrating the model. 
Calibration was achieved for individual years from 2003-13 
for the 15 randomly selected HRUs. The model was then 
validated by combining data from 2003-13 and 15 HRUs. 
The median values of the optimized parameter under model 
calibration were used for model validation. The calibration 
and validation was carried out using the SWAT CUP module 
of SWAT model. The Bayesian approach of SWAT CUP 
( ) assisted in 
identification of parameter space specifically applicable for 
an observation data series  (ETact). During this process, the 
uncertainty in prediction (MODIS ETact product) was 
based on spatial cell where the target major crop also 
included a few other landuse system and represented a 
composite system response. By adopting this Bayesian 
approach, a parameter space was first ascertained and the 
mean value was used for validation across the whole set of 

Tasdighi et al., 2018; Abbaspour et al., 2007
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Fig. 1. Map of the study region comprising of five districts of 
central Punjab

Table: 1
Description and sources of data used in SWAT model

Data used Data sources Data resolution

MaxT, MinT, RF IMD Gridded data RF (0.25 × 0.25 degree),
Temp (1 × 1 degree)

LU/LC map National Remote Sensing Centre, ISRO, Bhuvan portal 1:250000 scale
SRTM DEM SRTM official website 90 m resolution
Soil map FAO 30 arc-second harmonized world soil (HWSD) raster database 1:5000000 scale

https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/

the required raster soil data, LU/LC data and DEM data 
were preprocessed and were extracted as per the study area 
boundary. All the maps were converted to the same resolution 
of  90 m for running the SWAT model.

The soil map depicting SWAT soil class and texture and 
the LU/LC maps of the study region are shown in Fig. 2.

Delineation of Watershed, sub-basins and Generation of 
Hydrologic Response Units (HRU)

SWAT compatible files were prepared for the study 
region and imported into the model. Outlets were chosen 

Fig. 2. Soil and LU/LC map of the study region
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Fig. 1. Map of the study region comprising of five districts of 
central Punjab

Table: 1
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the required raster soil data, LU/LC data and DEM data 
were preprocessed and were extracted as per the study area 
boundary. All the maps were converted to the same resolution 
of  90 m for running the SWAT model.

The soil map depicting SWAT soil class and texture and 
the LU/LC maps of the study region are shown in Fig. 2.

Delineation of Watershed, sub-basins and Generation of 
Hydrologic Response Units (HRU)

SWAT compatible files were prepared for the study 
region and imported into the model. Outlets were chosen 

Fig. 2. Soil and LU/LC map of the study region
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years i.e. from 2003-13. The approach used in SWAT CUP 
appears to embrace comparably satisfactory performance 
and is observed to be a pragmatic approach (Tasdighi et al., 
2018). The values of 63 parameters pertaining to soil, basin, 

plant and groundwater components used for optimization 
are shown in three separate graphs in Fig. 3. The ranges and 
fitted values of these 63 parameters under model calibration 
are given in Table 2 and the details of the optimized parame-
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Fig. 3. Parameter ranges and optimized parameters for calibration and validation of SWAT

Table: 2
Ranges of  63 parameters during SWAT calibration 

S.No.        Parameters Lower Upper Average  
value value of fitted

values

1. v__ESCO.hru 0.00 0.54 0.17

2. v__EPCO.hru 0.30 1.00 0.74

3. v__REVAPMN.gw 250.00 1000.00 652.27

4. r__SOL_K().sol 0.00 1.00 0.50

5. r__SOL_AWC().sol 0.00 1.00 0.62

6. r__SOL_BD().sol 0.00 0.39 0.06

7. v__ALPHA_BF.gw 0.64 1.13 0.81

8. v__CANMX.hru 0.00 65.00 44.55

9. r__SLSUBBSN.hru -1.00 0.00 -0.47

10. v__GW_DELAY.gw 120.00 300.00 224.24

11. v__GWQMN.gw 1800.00 3500.00 2710.27

12. v__GW_REVAP.gw 0.00 0.10 0.03

13. v__EVLAI.bsn 2.05 8.68 5.34

14. v__SURLAG.bsn 0.32 17.44 8.13

15. v__ESCO.bsn 0.31 0.77 0.58

16. v__EPCO.bsn 0.00 0.43 0.20

17. r__CH_N2.rte -0.76 0.08 -0.47

18. r__CH_K2.rte -0.09 0.74 0.43

19. v__ALPHA_BNK.rte 0.17 0.72 0.51

20. v__BLAI{33}.plant.dat 3.12 5.04 4.12

21. v__BIO_E{33}.plant.dat 23.06 29.20 26.68

22. v__HVSTI{33}.plant.dat 0.28 0.43 0.36

23. v__FRGRW1{33}.plant.dat 0.13 0.28 0.20

24. v__T_OPT{33}.plant.dat 26.08 32.23 29.43

25. v__T_BASE{33}.plant.dat 5.13 8.38 6.65

26. v__GSI{33}.plant.dat 0.01 0.01 0.01

27. v__VPDFR{33}.plant.dat 1.53 3.51 2.37

28. v__FRGMAX{33}.plant.dat 0.71 1.12 0.96

29. v__WAVP{33}.plant.dat 3.95 4.85 4.34

30. v__BIOEHI{33}.plant.dat 28.73 35.84 34.38

31. v__BLAI{142}.plant.dat 1.68 4.56 3.39

32. v__BIO_E{142}.plant.dat 19.84 26.59 23.25

33. v__HVSTI{142}.plant.dat 0.36 0.58 0.49

34. v__FRGRW1{142}.plant.dat 0.29 0.34 0.31

35. v__T_OPT{142}.plant.dat 15.67 25.23 20.80

36. v__T_BASE{142}.plant.dat 1.74 8.58 5.93

37. v__GSI{142}.plant.dat 0.01 0.01 0.01

38. v__VPDFR{142}.plant.dat 1.52 3.84 2.82

39. v__FRGMAX{142}.plant.dat 0.30 0.77 0.54

40. v__WAVP{142}.plant.dat 4.42 7.25 5.57

41. v__BIOEHI{142}.plant.dat 33.26 39.87 36.34

42. v__BLAI{7}.plant.dat 3.18 5.06 3.98

43. v__BIO_E{7}.plant.dat 14.24 15.86 15.23

44. v__HVSTI{7}.plant.dat 0.85 1.06 0.94

45. v__FRGRW1{7}.plant.dat 0.05 0.06 0.05

46. v__T_OPT{7}.plant.dat 28.06 32.24 30.30

47. v__T_BASE{7}.plant.dat 9.02 10.70 9.70

48. v__GSI{7}.plant.dat 0.00 0.00 0.00

49. v__VPDFR{7}.plant.dat 3.50 4.10 3.73

50. v__FRGMAX{7}.plant.dat 0.42 0.64 0.49
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S.No.        Parameters Lower Upper Average  
value value of fitted

values

51. v__WAVP{7}.plant.dat 4.10 6.75 5.46

52. v__BIOEHI{7}.plant.dat 16.15 18.56 17.41

53. v__BLAI{28}.plant.dat 3.32 4.44 3.80

54. v__BIO_E{28}.plant.dat 13.47 27.82 18.28

55. v__HVSTI{28}.plant.dat 0.36 0.58 0.48

56. v__FRGRW1{28}.plant.dat 0.06 0.07 0.06

57. v__T_OPT{28}.plant.dat 22.00 27.34 23.86

58. v__T_BASE{28}.plant.dat 4.81 6.44 5.62

59. v__GSI{28}.plant.dat 0.01 0.01 0.01

60. v__VPDFR{28}.plant.dat 3.46 4.03 3.65

61. v__FRGMAX{28}.plant.dat 0.62 0.75 0.68

62. v__WAVP{28}.plant.dat 4.31 5.63 5.19

63. v__BIOEHI{28}.plant.dat 46.48 61.59 53.43
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ters are presented in Table 3. Hydrological fluxes on a year 
basis for all the basins and districts were then estimated 
using the validated SWAT model from 2003-2013.

SWAT model Performance evaluation

Model performance during calibration and validation 
were inspected using two prediction error statistics viz. the 

2coefficient of determination (R ) (Krause et al., 2005) and 
modified NSE (Nash and Sutcliffe, 1970). The equation for 

2R  and NS are given below:

              ...(1)

              ...(2)

thIn the above equations Oi represents the value of i  
observed data, Ō represents the mean value of  the observed 

thdata, Si represents the i  simulated value, S represents the 
model simulated mean value and N represents the total  
number of events, respectively.

Calibration and Validation Statistics of SWAT Model

Model performance during calibration and validations 
was found to be in line with the observed data. The NS 
values during model calibration ranged from 0.49-0.62 for 

2all the 15 HRUs and the R  values during model calibration 
2 ranged from 0.86-0.9. Whereas, NS and R values during 

model validation were ≅0.5 and ≥ 0.7, respectively. The 

prediction error statistics of validated SWAT model are 
presented in Table 4.

2 NS and R values ≅0.5 and ≥ 0.7 can be considered as 

satisfactory for SWAT model using satellite ET-based 

3.  RESULTS AND DISCUSSION
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Fig. 3. Parameter ranges and optimized parameters for calibration and validation of SWAT

Table: 2
Ranges of  63 parameters during SWAT calibration 

S.No.        Parameters Lower Upper Average  
value value of fitted

values

1. v__ESCO.hru 0.00 0.54 0.17

2. v__EPCO.hru 0.30 1.00 0.74

3. v__REVAPMN.gw 250.00 1000.00 652.27

4. r__SOL_K().sol 0.00 1.00 0.50

5. r__SOL_AWC().sol 0.00 1.00 0.62

6. r__SOL_BD().sol 0.00 0.39 0.06

7. v__ALPHA_BF.gw 0.64 1.13 0.81

8. v__CANMX.hru 0.00 65.00 44.55

9. r__SLSUBBSN.hru -1.00 0.00 -0.47

10. v__GW_DELAY.gw 120.00 300.00 224.24

11. v__GWQMN.gw 1800.00 3500.00 2710.27

12. v__GW_REVAP.gw 0.00 0.10 0.03

13. v__EVLAI.bsn 2.05 8.68 5.34

14. v__SURLAG.bsn 0.32 17.44 8.13

15. v__ESCO.bsn 0.31 0.77 0.58

16. v__EPCO.bsn 0.00 0.43 0.20

17. r__CH_N2.rte -0.76 0.08 -0.47

18. r__CH_K2.rte -0.09 0.74 0.43

19. v__ALPHA_BNK.rte 0.17 0.72 0.51

20. v__BLAI{33}.plant.dat 3.12 5.04 4.12

21. v__BIO_E{33}.plant.dat 23.06 29.20 26.68

22. v__HVSTI{33}.plant.dat 0.28 0.43 0.36

23. v__FRGRW1{33}.plant.dat 0.13 0.28 0.20

24. v__T_OPT{33}.plant.dat 26.08 32.23 29.43

25. v__T_BASE{33}.plant.dat 5.13 8.38 6.65

26. v__GSI{33}.plant.dat 0.01 0.01 0.01

27. v__VPDFR{33}.plant.dat 1.53 3.51 2.37

28. v__FRGMAX{33}.plant.dat 0.71 1.12 0.96

29. v__WAVP{33}.plant.dat 3.95 4.85 4.34

30. v__BIOEHI{33}.plant.dat 28.73 35.84 34.38

31. v__BLAI{142}.plant.dat 1.68 4.56 3.39

32. v__BIO_E{142}.plant.dat 19.84 26.59 23.25

33. v__HVSTI{142}.plant.dat 0.36 0.58 0.49

34. v__FRGRW1{142}.plant.dat 0.29 0.34 0.31

35. v__T_OPT{142}.plant.dat 15.67 25.23 20.80

36. v__T_BASE{142}.plant.dat 1.74 8.58 5.93

37. v__GSI{142}.plant.dat 0.01 0.01 0.01

38. v__VPDFR{142}.plant.dat 1.52 3.84 2.82

39. v__FRGMAX{142}.plant.dat 0.30 0.77 0.54

40. v__WAVP{142}.plant.dat 4.42 7.25 5.57

41. v__BIOEHI{142}.plant.dat 33.26 39.87 36.34

42. v__BLAI{7}.plant.dat 3.18 5.06 3.98

43. v__BIO_E{7}.plant.dat 14.24 15.86 15.23

44. v__HVSTI{7}.plant.dat 0.85 1.06 0.94

45. v__FRGRW1{7}.plant.dat 0.05 0.06 0.05

46. v__T_OPT{7}.plant.dat 28.06 32.24 30.30

47. v__T_BASE{7}.plant.dat 9.02 10.70 9.70

48. v__GSI{7}.plant.dat 0.00 0.00 0.00

49. v__VPDFR{7}.plant.dat 3.50 4.10 3.73

50. v__FRGMAX{7}.plant.dat 0.42 0.64 0.49

Manish Debnath et al. / Indian J. Soil Cons., 50(2): 137-146, 2022

S.No.        Parameters Lower Upper Average  
value value of fitted

values

51. v__WAVP{7}.plant.dat 4.10 6.75 5.46

52. v__BIOEHI{7}.plant.dat 16.15 18.56 17.41

53. v__BLAI{28}.plant.dat 3.32 4.44 3.80

54. v__BIO_E{28}.plant.dat 13.47 27.82 18.28

55. v__HVSTI{28}.plant.dat 0.36 0.58 0.48

56. v__FRGRW1{28}.plant.dat 0.06 0.07 0.06

57. v__T_OPT{28}.plant.dat 22.00 27.34 23.86

58. v__T_BASE{28}.plant.dat 4.81 6.44 5.62

59. v__GSI{28}.plant.dat 0.01 0.01 0.01

60. v__VPDFR{28}.plant.dat 3.46 4.03 3.65

61. v__FRGMAX{28}.plant.dat 0.62 0.75 0.68

62. v__WAVP{28}.plant.dat 4.31 5.63 5.19

63. v__BIOEHI{28}.plant.dat 46.48 61.59 53.43
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ters are presented in Table 3. Hydrological fluxes on a year 
basis for all the basins and districts were then estimated 
using the validated SWAT model from 2003-2013.

SWAT model Performance evaluation

Model performance during calibration and validation 
were inspected using two prediction error statistics viz. the 

2coefficient of determination (R ) (Krause et al., 2005) and 
modified NSE (Nash and Sutcliffe, 1970). The equation for 

2R  and NS are given below:

              ...(1)

              ...(2)

thIn the above equations Oi represents the value of i  
observed data, Ō represents the mean value of  the observed 

thdata, Si represents the i  simulated value, S represents the 
model simulated mean value and N represents the total  
number of events, respectively.

Calibration and Validation Statistics of SWAT Model

Model performance during calibration and validations 
was found to be in line with the observed data. The NS 
values during model calibration ranged from 0.49-0.62 for 

2all the 15 HRUs and the R  values during model calibration 
2 ranged from 0.86-0.9. Whereas, NS and R values during 

model validation were ≅0.5 and ≥ 0.7, respectively. The 

prediction error statistics of validated SWAT model are 
presented in Table 4.

2 NS and R values ≅0.5 and ≥ 0.7 can be considered as 

satisfactory for SWAT model using satellite ET-based 

3.  RESULTS AND DISCUSSION
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-1 -1 -1 -1 -1mm y , 548 mm y  and 7.7 mm y , 9.5 mm y , 5.7 mm y , 
-1 -12.1 mm y , 8.8 mm y , respectively. The ROsur and WY 

values for the same period for these study districts were 
-1 -1 -1estimated to be 42.8 mm y , 180.54 mm y , 81.1 mm y , 

-1 -1 -1 -154.5 mm y , 132.8 mm y  and 43.1 mm y , 184.2 mm y , 
-1 -1 -182.64 mm y , 54.96 mm y , 135.7 mm y , respectively. 

Among all the districts, the ETact was observed highest for 
Moga districts (88.5% of district average RF) followed by 
Barnala (86.6% of the district average RF), Sangrur (79.7% 
of district average RF), Ludhiana (73.2 % of district average 
RF) and Patiala (63.2% of district average RF), respectively. 
The highest ETact of Moga district may be attributable to 
the fact that the ground water depletion in Moga district was 
the highest as compared to other four districts. Such 
depletion is related to more ground water extraction rate in 
the district and thus the excess water used would affect the 
evaporation component contributing to more ETact value 
compared to other districts. The transpiration component 
will not vary much, but the evaporation from soil surface 
due to excess water application would result in the higher 
ETact value as compared to other districts. The WY values 
were found highest for Patiala (22% of the district average 
RF) followed by Ludhiana (18.1% of the district average 
RF), Sangrur (14.5% of the district average RF), Barnala 
(11.2% of the district average RF) and Moga (9.32% of the 
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1 -1and 120.5 mm y . Moreover, the PL, ETact, SRO and WY 
were found to be 7.8%, 74%, 17.5% and 17%, respectively. 
Spatial variability of  average RF, SRO, ETact, PL and WY 
in  the study region are shown in Fig. 4.

Sub-basin boundaries of any watershed system may or 
may not match with the district boundaries. Moreover, 
during delineation of watershed from DEM, the remote 
point and the outlet of any delineated sub-basin may not be 
the same as the district boundary. Therefore, in the present 
study, to estimate district wise hydrological flux variation, 
sub-basins were clipped to district boundaries and the 
district wise hydrologic fluxes were estimated. The clipped 
boundaries of sub-basins within each district boundaries are 
presented in Fig. 5. It can be observed from Fig. 5 that the 
delineated area of sub-basins in each district (viz., Barnala, 
Moga, Sangrur, Patiala, Ludhiana) are distint and the respective 
polygon features of the sub-basins are uniquely displayed 
with varying colour. Moroever, the entire area of the district 
is being covered under different sub-basins as presented in 

-1Fig. 5. The  RF for year 2003-13 was 462.4 mm y , 817.6 
-1 -1 -1 -1mm y , 569 mm y , 491 mm y  and 748 mm y  for Moga, 

Patiala, Sangrur, Barnala and Ludhiana, respectively. The 
SWAT estimated average ETact and PL values for these 

-1 -1 -1districts were 409.3 mm y , 557.5 mm y , 454 mm y , 425.2 

Table: 3
Details of the optimized parameters under SWAT calibration

Parameter name Parameter description

ESCO Soil evaporation compensation factor.

EPCO Plant uptake compensation factor.

REVAPMN Threshold depth of water in the shallow aquifer for "revap" to occur (mm).

SOL_K Saturated hydraulic conductivity.

SOL_AWC Available water capacity of the soil layer.

SOL_BD Moist bulk density.

CN2 SCS runoff curve number f

ALPHA_BF Base flow alpha factor (days).

CANMX Maximum canopy storage.

SLSUBBSN Average slope length.

GW_DELAY Groundwater delay (days).

GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur (mm).

GW_REVAP Groundwater "revap" coefficient.

EVLAI Leaf area index at which no evaporation occurs from water surface.

SURLAG Surface runoff lags time.

CH_K2 Effective hydraulic conductivity in main channel alluvium.

ALPHA_BNK Base flow alpha factor for bank storage.

BLAI Max leaf area index.

BIO_E Biomass/Energy Ratio.

HVSTI Harvest index.

FRGRW1 Fraction of  the plant growing season corresponding to the 1st. Point on the optimal leaf area development curve.

T_OPT Optimal temp for plant growth.

T_BASE Min temp for plant growth.

GSI Max stomatal conductance (in drought condition).

VPDFR Vapour pressure deficit corresponding to the fraction maximum stomatal conductance defined by FRGMAX

FRGMAX Fraction of maximum stomatal conductance that is achievable at a high vapour pressure deficit.

WAVP Rate of decline in radiation use efficiency per unit increase in vapour pressure deficit.

BIOEHI Biomass-energy ratio corresponding to the 2nd. point on the radiation use efficiency curve.

v__ Means the default parameter is replaced by a given value.  

r__ Means the existing parameter value is multiplied by (1 + a given value).

7,28,33,42,142 Represents forest-deciduous, winter wheat, rice, wheat grass and irrigated double crops, respectively

Table: 4
Prediction error statistics of validated SWAT model for the 
study region

2HRU number R NS

ET_248 0.82 0.24

ET_310 0.83 0.4

ET_345 0.8 0.3

ET_360 0.79 0.24

ET_415 0.79 0.23

ET_420 0.81 0.36

ET_430 0.74 0.08

ET_432 0.82 0.38

ET_463 0.76 0.13

ET_535 0.77 0.17

ET_552 0.77 0.29

ET_605 0.72 0.02

ET_608 0.79 0.35

ET_618 0.85 0.54

ET_634 0.77 0.29

calibration and validation of SWAT Model. Odusanya et al. 
(2019) used MODIS-derived ET data to calibrate and 
validate the SWAT model for different sub-basins in an 
ungauged watershed in Nigeria. They reported that out of 
the 53 sub-basins for about 63% of the sub-basins the model 
NSE values were >0.5 and the average NSE values for 
SWAT model validation using MODIS derived ET for all 
sub-basins were 0.45 which was considered acceptable.

Spatial Variability of Hydrologic Fluxes 

The average rainfall (RF) for year 2003-13 for Moga, 
Barnala, Sangrur, Patiala and Ludhiana districts varied from 

-1365.2-1253.4 mm y . The percolation loss (PL) varied from 
-12.01-181.5 mm y . The ETact values ranged from 341.5-

-1763.98 mm y . The surface runoff (SR) values varied from 
-120.4-463.2 mm y . The water yield (WY) varied from 
-120.54-464.4 mm y . The overall average values of RF, PL, 

ETact, SRO and WY for the five study districts were found 
-1 -1 -1 -to be 674.2 mm y , 52.5 mm y , 503.3 mm y , 118.2 mm y

Fig. 4. Map showing a) SWAT generated sub-basins and spatial variability of b) Rainfall, c) Surface runoff, d) Water yield, 
e) actual evapotranspiration and f) Percolation losses in the study region
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Fig. 7. District wise ETact trend during 2003-13
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Fig. 6. District wise RF trend during 2003-13 
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Fig. 5. District wise sub-basin areas for estimation of hydrological fluxes

for Sangrur, Ludhiana, Patiala, Moga and Barnala districts, 
respectively. An increase in cropped area by 1.2% under the 
rice-wheat cropping system was observed during 2003 to 
2013. The effect of increase in area under  major cropping 
system in the study districts were reflected in the increased 
ETact pertaining to the Central Punjab encompassing these 
five districts. An increase in ETact indicated an increase in 
demand of irrigation water to meet the crop water require-
ments. However, most of the ETact requirements were met 
from ground water resources of the region. Similar findings 
pertaining to increase in number of tubewells and corre-
sponding increase in groundwater extraction was reported 
by Chawla et al., 2010. Results of this study are indicative of 
more load on groundwater because majority of farmland is 
under groundwater irrigation as compared to canal irriga-
tion in the region.

SWAT model was successfully calibrated and validated 
using MODIS ET fractions based ETact data derived 
through SSEBop model (ver. 5.0). Validated SWAT model 
was used for estimating hydrological fluxes in five districts 
of central Punjab, India. District wise estimation of hydrologi-
cal fluxes are generally preferred over sub-basin wise 
analysis due to its use by the policymakers and planners for 
chalking out district wise water management activities. 
Moreover, the district wise plan presented in this study 
emanated from sub-basin wise plan, in which the SWAT 
model was calibrated using HRUs leading to sub-basin wise 
hydrological fluxes estimation and subsequent geo-processing 
operation such as clipping with the district administrative 
boundaries. Results indicated that a significant portion of 
rainfall and groundwater was utilized for meeting the ETact 
requirements in all districts. Moreover, it was observed that 
water yield values generated from the sub-basins under 
Moga, Barnala and Sangrur districts were less as compared 
to Ludhiana and Patiala districts. Impact of increasing ETact 
was reflected in excess groundwater draft in all the five 
study districts during the study period. The protocol 
developed in this study can be useful pertaining to extrac-
tion of AET from open-source satellite data leading to 
validation of SWAT model. Further, the generated data can 
be used for estimation of water budgeting parameters leading 
to judicious agricultural water management at regional 
scales.

4. CONCLUSIONS

district average RF). Moreover, the highest PL rate was 
found for Patiala (9.6 % of the district average RF) followed 
by Ludhiana (8.8% of the district average RF), Sangrur 
(5.6% of the district average RF), Barnala (2.1%) and Moga 
(1.1% of the district average RF), respectively. Results 
indicated that the Moga, Barnala and Sangrur districts were 
having the highest rate of ETact values, but, lowest WY and 
PL values as compared to Ludhiana and Patiala districts. A 
similar trend in decrease of WY with an increase in ETact 
values in the Gomti river basin was reported by Abeysingha 
et al., 2015 using SWAT model.

Trend of Yearly Average RF and Etact

The RF for all the districts was observed to be increas-
ing over time. Trend analysis of rainfall depth and ETact of 
the study region during 2003 to 2013 was undertaken using 
linear regression technique. Trend of RF and ETact are 
shown in Fig's 6 and 7, respectively. 

The ETact represents the exchange of water and energy 
between the soil and atmosphere (Ochoa et al., 2019). The 
soil moisture content on the other hand is dependent on the 
amount of precipitation and irrigation water applied. Major 
cropping system of the five study districts were rice and 
wheat. The area under major crops in the study districts were 
0.57 M ha, 0.52 M ha, 0.46 M ha, 0.35 M ha and 0.22 M ha 
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Table: 5
District wise regression statistics for RF and ETact trends over years

Regression statistics for rainfall trend Regression statistics for ETact trend

Barnala y = 15.17x + 421.2 R² = 0.096 y = 5.520x + 403.2 R² = 0.041
Moga y = 2.053x + 464.8 R² = 0.002 y = 4.846x + 407.1 R² = 0.028
Patiala y = 18.93x + 464.3 R² = 0.083 y = 6.156x + 524.7 R² = 0.053
Sangrur y = 10.11x + 763.3 R² = 0.018 y = 9.140x + 404.4 R² = 0.111
Ludhiana y = 30.41x + 567.2 R² = 0.162 y = 10.68x + 485.4 R² = 0.138
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Fig. 7. District wise ETact trend during 2003-13
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Fig. 6. District wise RF trend during 2003-13 
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Fig. 5. District wise sub-basin areas for estimation of hydrological fluxes

for Sangrur, Ludhiana, Patiala, Moga and Barnala districts, 
respectively. An increase in cropped area by 1.2% under the 
rice-wheat cropping system was observed during 2003 to 
2013. The effect of increase in area under  major cropping 
system in the study districts were reflected in the increased 
ETact pertaining to the Central Punjab encompassing these 
five districts. An increase in ETact indicated an increase in 
demand of irrigation water to meet the crop water require-
ments. However, most of the ETact requirements were met 
from ground water resources of the region. Similar findings 
pertaining to increase in number of tubewells and corre-
sponding increase in groundwater extraction was reported 
by Chawla et al., 2010. Results of this study are indicative of 
more load on groundwater because majority of farmland is 
under groundwater irrigation as compared to canal irriga-
tion in the region.

SWAT model was successfully calibrated and validated 
using MODIS ET fractions based ETact data derived 
through SSEBop model (ver. 5.0). Validated SWAT model 
was used for estimating hydrological fluxes in five districts 
of central Punjab, India. District wise estimation of hydrologi-
cal fluxes are generally preferred over sub-basin wise 
analysis due to its use by the policymakers and planners for 
chalking out district wise water management activities. 
Moreover, the district wise plan presented in this study 
emanated from sub-basin wise plan, in which the SWAT 
model was calibrated using HRUs leading to sub-basin wise 
hydrological fluxes estimation and subsequent geo-processing 
operation such as clipping with the district administrative 
boundaries. Results indicated that a significant portion of 
rainfall and groundwater was utilized for meeting the ETact 
requirements in all districts. Moreover, it was observed that 
water yield values generated from the sub-basins under 
Moga, Barnala and Sangrur districts were less as compared 
to Ludhiana and Patiala districts. Impact of increasing ETact 
was reflected in excess groundwater draft in all the five 
study districts during the study period. The protocol 
developed in this study can be useful pertaining to extrac-
tion of AET from open-source satellite data leading to 
validation of SWAT model. Further, the generated data can 
be used for estimation of water budgeting parameters leading 
to judicious agricultural water management at regional 
scales.

4. CONCLUSIONS

district average RF). Moreover, the highest PL rate was 
found for Patiala (9.6 % of the district average RF) followed 
by Ludhiana (8.8% of the district average RF), Sangrur 
(5.6% of the district average RF), Barnala (2.1%) and Moga 
(1.1% of the district average RF), respectively. Results 
indicated that the Moga, Barnala and Sangrur districts were 
having the highest rate of ETact values, but, lowest WY and 
PL values as compared to Ludhiana and Patiala districts. A 
similar trend in decrease of WY with an increase in ETact 
values in the Gomti river basin was reported by Abeysingha 
et al., 2015 using SWAT model.

Trend of Yearly Average RF and Etact

The RF for all the districts was observed to be increas-
ing over time. Trend analysis of rainfall depth and ETact of 
the study region during 2003 to 2013 was undertaken using 
linear regression technique. Trend of RF and ETact are 
shown in Fig's 6 and 7, respectively. 

The ETact represents the exchange of water and energy 
between the soil and atmosphere (Ochoa et al., 2019). The 
soil moisture content on the other hand is dependent on the 
amount of precipitation and irrigation water applied. Major 
cropping system of the five study districts were rice and 
wheat. The area under major crops in the study districts were 
0.57 M ha, 0.52 M ha, 0.46 M ha, 0.35 M ha and 0.22 M ha 
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